81 |
Déficits synaptiques et comportementaux des voies méso-cortico-limbiques induits par le cannabis ou un déséquilibre alimentaire en acides gras polyinsaturés / Consequences of prenatal cannabis exposure or adolescent omega-3 deficiency on synaptic and behavioral functions in mesolimbic pathwayBara, Anissa 07 December 2017 (has links)
La malnutrition et la consommation de cannabis font partie des grands problèmes de santé publique.L'objectif de cette thèse était d’étudier les conséquences de ces facteurs externes sur les voies mésocorticolimbiques.Le système endocannabinoïde est un complexe multimoléculaire incluant les endocannabinoïdes (eCB), molécules lipidiques synthétisées à partir des oméga-3, les enzymes de synthèse et de dégradation des eCB, et les récepteurs aux cannabinoïdes de type 1 (CB1R), principale cible du cannabis. Nos travaux montrent qu’une alimentation déficiente en oméga-3, tout comme une exposition prénatale aux cannabinoïdes, altère la signalisation endocannabinoïde dans les régions étudiées. Nous avons découvert des altérations sévères du répertoire comportemental émotionnel et cognitif chez les souris déficientes en oméga-3 corrélées à des déficits spécifiques de la plasticité synaptique dépendante du complexe de signalisation mGlu5/eCB dans le PFC et le NAc. Nous avons mis en évidence une divergence sexuelle des effets à long-terme induits par une exposition prénatale aux cannabinoïdes chez la progéniture à l’âge adulte. Nous avons observé une diminution de l’interaction sociale chez les mâles mais pas chez les femelles exposés in-utero aux cannabinoïdes. Ce déficit comportemental était associé à une hyperexcitabilité des neurones pyramidaux et à l’absence spécifique de la plasticité synaptique endocannabinoïde dans le PFC des mâles. Enfin, dans nos deux modèles d’étude, la potentialisation pharmacologique du complexe macromoléculaire de signalisation mGlu5/eCB normalise les déficits synaptiques et comportementaux, ouvrant la voie sur de nouvelles cibles thérapeutiques. / Malnutrition and the use of cannabis are amongst the public’s most signficant problems. In the past decades, drastic dietary changes are accompanied by low consumption of essential omega-3 polyunsaturated fatty acids (PUFAs). Cannabis is the most frequently used illicit drug by pregnant women and young women of reproductive age. This thesis aimed to study the consequences of these environmental factors on synaptic and behavioral functions of the mesocorticolimbic system, particularly the nucleus accumbens (NAc) and prefrontal cortex (PFC). The endocannabinoid system is a multimolecular complex including endocannabinoids (eCB), lipidic molecules synthesized from PUFAs, eCB synthesizing and degradating enzymes, and cannabinoid receptor type 1 (CB1R), the main target of cannabis. Our work shows that an omega-3 deficiency, as well as PCE, alters endocannabinoid-signaling in the areas of interest.We found severe alterations in the emotional and cognitive behavioral repertoire of omega-3 deficient mice that correlated with specific alterations in synaptic plasticity mediated by mGlu5/eCB signaling complex in PFC and NAc.We showed a sexual divergence in the long-term effects of PCE in adult offsprings. We observed a decrease in social interaction in males but not in females prenatally exposed cannabinoids. This behavioral deficit was associated with hyperexcitability of the pyramidal neurons and a specific lack of endocannabinoid synaptic plasticity in the male PFC.Finally, in our two study models, pharmacological enchancement of the mGlu5/eCB macromolecular signaling complex normalized synaptic and behavioral deficits, illuminating routes to new therapeutic targets.
|
82 |
DREADD Targeting Projections from the Nucleus Accumbens to the Ventral Pallidum with Nicotine Self-AdministrationSmith, Amanda 01 December 2018 (has links)
Projections from the Nucleus Accumbens (NAc) to the Ventral Pallidum (VP) play a critical role in motivation and reward. Rewards and reward-associated cues are thought to alter this pathway by suppressing GABA release to the VP, however, the role of the NAc to VP pathway has never been investigated with regard to nicotine self-administration. We hypothesized that increasing GABAergic signaling from the NAc to the VP would decrease the reinforcing effects of nicotine. To increase GABA release, CRE dependent DREADD was expressed in the NAc of male rats. Administration of low dose clozapine activated the DREADD receptor and showed a reduction in responding for nicotine suggesting that activation of the NAc to VP pathway reduced reinforcement. However, a nonspecific effect was observed leading to future investigation of locomotor activity. Immunohistochemistry and microdialysis were used to confirm DREADD expression in the NAc and increased extracellular GABA in the VP.
|
83 |
Peripheral Dopamine 2 Receptors Both Modulate Central Dopamine Release and Adopt in a Similar Manner to that of Central Dopamine 2 ReceptorsObray, J. Daniel 24 April 2020 (has links)
Alcohol use disorder is a debilitating disorder affecting nearly 5% of people in the United States. Despite the prevalence of alcohol use disorder few affected individuals seek treatment and of those who do many will relapse. This highlights a need to develop new treatments for alcohol use disorder that are both more accessible and more effective. This dissertation characterizes a novel pathway involved in ethanol enhancement of dopamine levels in the nucleus accumbens as well as investigating alterations in dopamine 2 receptor expression and function following an acute dose of ethanol. This was done by using microdialysis to measure dopamine levels in the nucleus accumbens, single-unit recordings of dopamine neurons in the ventral tegmental area to measure dopamine neuron activity and place conditioning to measure the rewarding properties of the intravenous dopamine and ethanol. It was found that activation of peripheral dopamine 2 receptors by intravenous dopamine enhanced dopamine levels in the nucleus accumbens and dopamine neuron firing rate in the ventral tegmental area. Additionally, intravenous dopamine produced a modest conditioned place preference. Domperidone, a peripheral dopamine 2 receptor antagonist blocked each of these effects. Further, domperidone blocked ethanol enhancement of dopamine release in the nucleus accumbens and bidirectionally modulated the sedating effects of ethanol depending on the dose of ethanol administered. The involvement of peripheral dopamine 2 receptors in ethanol reward could not be ascertained in these studies as domperidone produced a weak conditioned place aversion. Finally, acute ethanol was found to enhance dopamine 2 receptor expression in the nucleus accumbens and medial prefrontal cortex while also enhancing dopamine 2 receptor expression on NK and B cells. Additionally, ethanol was found to reduce desensitization of dopamine 2 receptors in the ventral tegmental area. These results demonstrate that activation of peripheral dopamine 2 receptors can enhance dopamine levels in the nucleus accumbens and that this effect has relevance in understanding the effects of ethanol on dopamine release in the mesolimbic pathway. These results also provide evidence for transient upregulation of dopamine 2 receptors in the brain and on leukocytes suggesting that dopamine 2 receptor levels on leukocytes may be a useful biomarker for central dopamine function.
|
84 |
Peripheral Dopamine 2 Receptors Both Modulate Central Dopamine Release and Adopt in a Similar Manner to that of Central Dopamine 2 ReceptorsObray, J. Daniel 24 April 2020 (has links)
Alcohol use disorder is a debilitating disorder affecting nearly 5% of people in the United States. Despite the prevalence of alcohol use disorder few affected individuals seek treatment and of those who do many will relapse. This highlights a need to develop new treatments for alcohol use disorder that are both more accessible and more effective. This dissertation characterizes a novel pathway involved in ethanol enhancement of dopamine levels in the nucleus accumbens as well as investigating alterations in dopamine 2 receptor expression and function following an acute dose of ethanol. This was done by using microdialysis to measure dopamine levels in the nucleus accumbens, single-unit recordings of dopamine neurons in the ventral tegmental area to measure dopamine neuron activity and place conditioning to measure the rewarding properties of the intravenous dopamine and ethanol. It was found that activation of peripheral dopamine 2 receptors by intravenous dopamine enhanced dopamine levels in the nucleus accumbens and dopamine neuron firing rate in the ventral tegmental area. Additionally, intravenous dopamine produced a modest conditioned place preference. Domperidone, a peripheral dopamine 2 receptor antagonist blocked each of these effects. Further, domperidone blocked ethanol enhancement of dopamine release in the nucleus accumbens and bidirectionally modulated the sedating effects of ethanol depending on the dose of ethanol administered. The involvement of peripheral dopamine 2 receptors in ethanol reward could not be ascertained in these studies as domperidone produced a weak conditioned place aversion. Finally, acute ethanol was found to enhance dopamine 2 receptor expression in the nucleus accumbens and medial prefrontal cortex while also enhancing dopamine 2 receptor expression on NK and B cells. Additionally, ethanol was found to reduce desensitization of dopamine 2 receptors in the ventral tegmental area. These results demonstrate that activation of peripheral dopamine 2 receptors can enhance dopamine levels in the nucleus accumbens and that this effect has relevance in understanding the effects of ethanol on dopamine release in the mesolimbic pathway. These results also provide evidence for transient upregulation of dopamine 2 receptors in the brain and on leukocytes suggesting that dopamine 2 receptor levels on leukocytes may be a useful biomarker for central dopamine function.
|
85 |
Selective Breeding for High Alcohol Consumption and Response to Nicotine: Locomotor Activity, Dopaminergic in the Mesolimbic System, and Innate Genetic Differences in Male and Female Alcohol-Preferring, Non-Preferring, and Replicate Lines of High-Alcohol Drinking and Low-Alcohol Drinking RatsDeehan, Gerald A., Hauser, Sheketha R., Getachew, Bruk, Waeiss, R. Aaron, Engleman, Eric A., Knight, Christopher P., McBride, William J., Truitt, William A., Bell, Richard L., Rodd, Zachary A. 01 September 2018 (has links)
Rationale: There is evidence for a common genetic link between alcohol and nicotine dependence. Rodents selectively bred for high alcohol consumption/responsivity are also more likely to self-administer nicotine than controls. Objectives: The experiments examined the response to systemic nicotine, the effects of nicotine within the drug reward pathway, and innate expression of nicotine-related genes in a brain region regulating drug reward/self-administration in multiple lines of rats selectively bred for high and low alcohol consumption. Methods: The experiments examined the effects of systemic administration of nicotine on locomotor activity, the effects of nicotine administered directly into the (posterior ventral tegmental area; pVTA) on dopamine (DA) release in the nucleus accumbens shell (AcbSh), and innate mRNA levels of acetylcholine receptor genes in the pVTA were determined in 6 selectively bred high/low alcohol consuming and Wistar rat lines. Results: The high alcohol-consuming rat lines had greater nicotine-induced locomotor activity compared to low alcohol-consuming rat lines. Microinjections of nicotine into the pVTA resulted in DA release in the AcbSh with the dose response curves for high alcohol-consuming rats shifted leftward and upward. Genetic analysis of the pVTA indicated P rats expressed higher levels of α2 and β4. Conclusion: Selective breeding for high alcohol preference resulted in a genetically divergent behavioral and neurobiological sensitivity to nicotine. The observed behavioral and neurochemical differences between the rat lines would predict an increased likelihood of nicotine reinforcement. The data support the hypothesis of a common genetic basis for drug addiction and identifies potential receptor targets.
|
86 |
Where not what: the role of spatial-motor processing in decision-makingBanks, Parker January 2021 (has links)
Decision-making is comprised of an incredibly varied set of behaviours. However, all vertebrates tend to repeat previously rewarding actions and avoid those that have led to loss, behaviours known collectively as the win-stay, lose-shift strategy. This response strategy is supported by the sensorimotor striatum and nucleus accumbens, structures also implicated in spatial processing and the integration of sensory information in order to guide motor action. Therefore, choices may be represented as spatial-motor actions whose value is determined by the rewards and punishments associated with that action. In this dissertation I demonstrate that the location of choices relative to previous rewards and punishments, rather than their identities, determines their value. Chapters 2 and 4 demonstrate that the location of rewards and punishments drives future decisions to win-stay or lose-shift towards that location. Even when choices differ in colour or shape, choice value is determined by location, not visual identity. Chapter 3 compares decision-making when two, six, twelve, or eighteen choices are present, finding that the value of a win or loss is not tied to a single location, but is distributed throughout the choice environment. Finally, Chapter 5 provides anatomical support for the spatial-motor basis of choice. Specifically, win-stay responses are associated with greater oscillatory activity than win-shift responses in the motor cortex corresponding to the hand used to make a choice, whereas lose-shift responses are accompanied by greater activation of frontal systems compared to lose-stay responses. The win-stay and lose-shift behaviours activate structures known to project to different regions of the striatum. Overall, this dissertation provides behavioural evidence that choice location, not visual identity, determines choice value. / Thesis / Doctor of Philosophy (PhD)
|
87 |
The Adenosine A(2A) Receptor Agonist CGS 21680 Alleviates Auditory Sensorimotor Gating Deficits and Increases in Accumbal CREB in Rats Neonatally Treated With QuinpiroleBrown, Russell W., Bhide, Pradeep G., Gill, W. Drew, Peeters, Loren D. 01 December 2020 (has links)
Rationale and objective: The adenosine A(2A) receptor forms a mutually inhibitory heteromer with the dopamine D2 receptor, and A(2A) agonists decrease D2 signaling. This study analyzed whether an adenosine A(2A) agonist would alleviate deficits in sensorimotor gating and increases in cyclic-AMP response element binding protein (CREB) in the nucleus accumbens (NAc) in the neonatal quinpirole model of schizophrenia (SZ). Methods: Male and female Sprague-Dawley rats were neonatally treated with saline (NS) or quinpirole HCl (NQ; 1 mg/kg) from postnatal days (P) 1–21. Animals were raised to P44 and behaviorally tested on auditory sensorimotor gating as measured through prepulse inhibition (PPI) from P44 to P48. Approximately 15 min before each session, animals were given an ip administration of saline or the adenosine A(2A) agonist CGS 21680 (0.03 or 0.09 mg/kg). One day after PPI was complete on P49, animals were administered a locomotor activity test in the open field after saline or CGS 21680 treatment, respectively. On P50, the nucleus accumbens (NAc) was evaluated for CREB protein. Results: NQ-treated rats demonstrated a deficit in PPI that was alleviated to control levels by either dose of CGS 21680. The 0.03 mg/kg dose of CGS 21680 increased startle amplitude in males. The 0.09 mg/kg dose of CGS 21680 resulted in an overall decrease in locomotor activity. NQ treatment significantly increased NAc CREB that was attenuated to control levels by either dose of CGS 21680. Conclusions: This study revealed that an adenosine A(2A) receptor agonist was effective to alleviate PPI deficits in the NQ model of SZ in both male and female rats.
|
88 |
Catharanthine Modulates Mesolimbic Dopamine Transmission: A Potential Treatment for Alcohol Use DisorderWilliams, Benjamin M. 03 August 2022 (has links)
Catharanthine is derived from the Catharanthus roseus plant and is an analog to ibogaine, a drug that reduces opioid and alcohol withdrawal symptoms and decreases drug self-administration in both animals and humans. Catharanthine has promise to be an alternative pharmacological treatment for addiction without the adverse side effects associated with ibogaine. The objective of this study was to evaluate catharanthine’s effects on dopamine (DA) transmission in the mesolimbic DA system as well as determine its effects on both ethanol withdrawal induced anxiety and drug-seeking behaviors in mice. We hypothesized that catharanthine would inhibit evoked DA release in the nucleus accumbens (NAc) while also reducing anxiety and drug seeking behaviors in mice. We found that superfusion of catharanthine (1-100 µM) to mouse brain slices significantly inhibits evoked DA release in the NAc of the striatum in a dose dependent manner, while also slowing DA reuptake through inhibition of the dopamine transporter (DAT), measured using fast-scan cyclic voltammetry (FSCV). We also found that intraperitoneal administration of catharanthine in live mice significantly increases extracellular DA, measured via microdialysis with electrochemical detection. Catharanthine inhibition of evoked DA release was significantly reduced by the non-selective nAChR antagonist mecamylamine, the α4 nAChR antagonist dihydro-β-erythroidine hydrobromide (DhβE) and the α6 nAChR antagonist α-conotoxin MII, suggesting that catharanthine inhibits α4 and α6 nAChRs in the NAc. Iontophoresis and in-vivo data indicates that catharanthine slows DA reuptake and increases extracellular DA in the NAc through partial inhibition of DATs. Catharanthine also blocked increases in anxiety-like behavior during ethanol withdrawal in mice in the elevated plus maze. Lastly, preliminary data suggests that catharanthine increases both water and ethanol drinking in a 24-hour two-bottle choice drinking paradigm, which was contrary to our hypothesis.
|
89 |
Metaplasticity : how experience during brain development influences the subsequent exposure to a drug of abuseMuhammad, Arif, University of Lethbridge. Faculty of Arts and Science January 2011 (has links)
The influence of experience during brain development was investigated on juvenile behavior, adult amphetamine sensitization, and neuronal structural plasticity in rats. Two experiential factors (i.e., tactile stimulation and stress) were studied either before or soon after birth. Early experience feminized social behavior in males; however, only stress enhanced anxiety-like behavior in males. Repeated amphetamine administration resulted in the development and persistence of behavioral sensitization. However, tactile stimulation attenuated the drug-induced behavioral sensitization whereas stress failed to influence the degree of sensitization. Neuroanatomical findings revealed that early experience altered the cortical and subcortical structures. Furthermore, drug exposure reorganized the brain structures involved in addiction but early experience prevented the drug-associated changes. Early adverse experience influences the subsequent exposure to a drug of abuse at anatomical level whereas a favorable experience has an effect both at behavioral and anatomical levels and thus may play a protective role against drug-induced sensitization and addiction. / xii, 263 leaves : ill. ; 29 cm
|
90 |
Contribution des récepteurs 5-HT4 à la motivation et la prise de décision de manger / 5-HT4 receptors are required in motivation and decision-making to eatJean, Alexandra 13 December 2010 (has links)
Pour comprendre comment le cerveau inhibe l'appétit en dépit d'un besoin énergétique, nous avons étudié les mécanismes neuronaux qui sous-tendent l'effet hypophagique induit par la 3,4-N-méthylén édioxyméthamphétamine (MDMA : « ecstasie ») et le stress (immobilisation forcée) car ces facteurs réduisent la faim d'un animal, même s'il est affamé. Nous montrons que la stimulation intracérébrale des récepteurs 5-HT4 de la sérotonine (R5-HT4), ou leur plus forte expression (ectopique, physiologique) dans une aire de la récompense (noyau accumbens : NAc), réduit la faim en augmentant l'action anorexigène d'un peptide de l'addiction : CART. A l'encontre de l'équilibre énergétique, l'effet anorexigène induit par la stimulation des R5-HT4 dans le NAc s'accompagne d'une hyperactivité motrice, souvent décrite chez l'humain souffrant d'anorexie mentale. En supposant qu'un effet récompensant prévaut sur le danger d'un déséquilibre énergétique, nous montrons, qu'effectivement, l'injection d'un antagoniste des R5-HT4 dans le NAc réduit les effets anorexigène, hyperlocomoteur et récompensant de la MDMA. S'il est alors récompensant de se priver d'aliments, une souris surexprimant les R5-HT4 dans le NAc, devrait, après une faible et transitoire restriction alimentaire, continuer à s'auto-priver d'aliments même si l'aliment est fourni ensuite ad libitum. La réponse est positive. En revanche, les R5-HT4 du NAc ne contribuent pas, à priori, à l'hypophagie due au stress. Puisque le système de la récompense est inclut dans celui de la prise de décision contrôlée par le cortex préfrontal médian (CPFm), nous avons supposé que l'effet hypophagique provoqué par le stress utilise les R5-HT4 corticaux. L'injection de traitements nucléiques (siRNA, virus), dans le CPFm de souris sauvages et privées des R5-HT4, montre que seule l'activation des R5-HT4 du CPFm est à l'origine de l'effet hypophagique du stress. Nos résultats suggèrent que [1] le stress active les R5-HT4 du CPFm et réduit la densité du transporteur de capture de la 5-HT, favorisant [2] l'augmentation du taux de la 5-HT extracellulaire dans le noyau d u raphé dorsal d'où, [3] un contrôle inhibiteur de l'activité des neurones 5-HT par le R5-HT1A permettant d'éviter que l'hypophagie ne se prolonge en conduite anorexigène. L'ensemble de nos résultats étayent la possibilité que le réseau neuronal de l'addiction et de la prise de décision de manger après stress inclut celui de la conduite anorexigène, avec jusqu'alors, une contribution évidente des R5-HT4. / To understand how the brain inhibits appetite despite an energy demand, we study the neuronal mechanisms, which underlie the hypophagic effect induced by the 3,4-N-methylenedioxymethamphetamine (MDMA: « Ecstasy ») and stress (forced immobilization) because these factors reduce appetite in animals, even starved. We show that stimulating serotonin 4 receptors (5-HTR4), or their overexpression (ectopic, physiological) in a brain reward area (nucleus accumbens: NAc), reduced hunger in increasing the appetite-suppressant effect of an addiction peptide: CART. Against the energy balance, the appetite-suppressant effect induced by stimulating 5-HTR4 in the NAc comes along with hyperactivity, often described in human suffering from anorexia nervosa. Supposing that a rewarding effect prevails over the danger of an energy imbalance, we show indeed that injecting 5-HTR4 antagonist in the NAc reduced the appetite-suppressant effect, the hyperactivity and the rewarding effect provoked by MDMA. If food deprivation is rewarding, mouse overexpressing 5-HTR4 in the NAc, after a low and transient diet period, should continue to self-imposed food refusal even in the presence of food ad libitum. The answer is positive. In contrast, 5-HTR4 in the NAc does not contribute, à priori, to stress-induced hypophagia. Because the reward system is included in the neuronal network of the decision-making, mainly controlled by the medial prefrontal cortex (mPFC), we postulated that hypophagia following stress uses cortical 5-HTR4. Injecting nucleic treatments (siRNA, virus), in the mPFC of wild-type or 5-HTR4 null mice, shows that only the stimulation of 5-HTR4 in the mPFC sparks off the hypophagic effect of stress. Our results suggest that [1] stress activates 5-HTR4 in the mPFC and reduces density of the 5-HT transporter, promoting [2] increase of the extracellular 5-HT level in the dorsal raphe nucleus and thus [3] an inhibitory control of t he activity of 5-HT neurons by 5-HTR1A allowing to avoid that the period of food restriction persists (anorexia-like behavior). Colectively, our findings support the the neuronal network of addiction and decision-making to eat after stress include the neuronal pathway related to anorexia, with so far, a clear contribution of 5-HTR4.
|
Page generated in 0.0848 seconds