181 |
Arithmetic from an advanced perspective: an introduction to the AdelesBurger, Edward B. 25 September 2017 (has links)
Here we offer an introduction to the adele ring over the field of rational numbers Q and highlight some of its beautiful algebraic and topological structure. We then apply this rich structure to revisit some ancient results of number theory and place them within this modern context as well as make some new observations. We conclude by indicating how this theory enables us to extend the basic arithmetic of Q to the more subtle, complicated, and interesting setting of an arbitrary number field.
|
182 |
Algebraic numbers and harmonic analysis in the p-series caseAubertin, Bruce Lyndon January 1986 (has links)
For the case of compact groups G = Π∞ j=l Z(p)j which are direct products
of countably many copies of a cyclic group of prime order p, links are established between the theories of uniqueness and spectral synthesis on the one hand, and the theory of algebraic numbers on the other, similar to the well-known results of Salem, Meyer et al on the circle.
Let p ≥ 2 be a prime and let k{x⁻¹} denote the p-series field of
formal Laurent series z = Σhj=₋∞ ajxj with coefficients in the field
k = {0, 1,…, p-1} and the integer h arbitrary. Let L(z) = - ∞ if aj = 0 for all j; otherwise let L(z) be the largest index h for which ah ≠ 0. We examine compact sets of the form
[Algebraic equation omitted]
where θ ε k{x⁻¹}, L(θ) > 0, and I is a finite subset of k[x].
If θ is a Pisot or Salem element of k{x⁻¹}, then E(θ,I) is always a set of strong synthesis. In the case that θ is a Pisot element, more can be proved, including a version of Bochner's property leading to a sharper statement of synthesis, provided certain assumptions are made on I (e.g., I ⊃ {0,1,x,...,xL(θ)-1}).
Let G be the compact subgroup of k{x⁻¹} given by G = {z: L(z) < 0}.
Let θ ɛ k{x⁻¹}, L(θ) > 0, and suppose L(θ) > 1 if p = 3 and L(θ) > 2 if p = 2. Let I = {0,1,x,...,x²L(θ)-1}. Then E = θ⁻¹Ε(θ,I) is a perfect subset of G of Haar measure 0, and E is a set of uniqueness
for G precisely when θ is a Pisot or Salem element.
Some byways are explored along the way. The exact analogue of Rajchman's theorem on the circle, concerning the formal multiplication of series, is obtained; this is new, even for p = 2. Other examples are given of perfect sets of uniqueness, of sets satisfying the Herz criterion
for synthesis, and sets of multiplicity, including a class of M-sets of measure 0 defined via Riesz products which are residual in G.
In addition, a class of perfect M₀-sets of measure 0 is introduced
with the purpose of settling a question left open by W.R. Wade and
K. Yoneda, Uniqueness and quasi-measures on the group of integers of a
p-series field, Proc. A.M.S. 84 (1982), 202-206. They showed that if
S is a character series on G with the property that some subsequence
{SpNj} of the pn-th partial sums is everywhere pointwise bounded on G,
then S must be the zero series if SpNj → 0 a.e.. We obtain a strong
complement to this result by establishing that series S on G exist for
which Sn → 0 everywhere outside a perfect set of measure 0, and for
which sup |SpN| becomes unbounded arbitrarily slowly. / Science, Faculty of / Mathematics, Department of / Graduate
|
183 |
Additive FunctionsMcNeir, Ridge W. 06 1900 (has links)
The purpose of this paper is the analysis of functions of real numbers which have a special additive property, namely, f(x+y) = f(x)+f(y).
|
184 |
Two Axiomatic Definitions of the Natural NumbersRhoads, Lana Sue 06 1900 (has links)
The purpose of this thesis is to present an axiomatic foundation for the development of the natural numbers from two points of view. It makes no claim at originality other than at the point of organization and presentation of previously developed works.
|
185 |
Desmistificando o teorema fundamental da álgebra / Demystifying the fundamental theorem of algebraAlves, Aline de Paula, 1985- 27 August 2018 (has links)
Orientador: Sergio Antonio Tozoni / Dissertação (mestrado profissional) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-27T01:08:59Z (GMT). No. of bitstreams: 1
Alves_AlinedePaula_M.pdf: 1624216 bytes, checksum: ca8efd38c9857bc4e203a36d7bf9ebcf (MD5)
Previous issue date: 2015 / Resumo: Para viabilizar um contexto de desmistificação do Teorema Fundamental da Álgebra elaboramos esta dissertação por meio de pesquisas bibliográficas, que apresentam o referido teorema inserido no percurso histórico do desenvolvimento matemático, em especial, da resolução das equações polinomiais. Remetemo-nos, então, a uma investigação e comprovação minuciosa das definições, teoremas, lemas, proposições e propriedades sobre os números complexos. Neste quadro, caminhamos para uma abordagem sobre continuidade e limites infinitos, destacando formalmente os itens essenciais para a demonstração do Teorema Fundamental da Álgebra utilizando basicamente elementos da matemática elementar. Por fim, apresentamos resultados provenientes do teorema supracitado e uma breve perspectiva de como este tema é desenvolvido no ensino médio. Enfim, visamos colaborar para que o enunciado de teorema e sua demonstração sejam mais presentes e assumam seu papel de importância no ensino, sem afligir aqueles que dele necessitem de sua compreensão ou que estejam envolvidos em sua transmissão / Abstract: To enable a context of demystification of the Fundamental Theorem of Algebra, we elaborated this thesis through bibliographic researches, which introduce the cited theorem in the historical parth of the mathematical development, specially in the resolution of polynomial equations. We worked in a thorough investigation of definitions, theorems, lemmas, propositions and properties of the complex numbers. In this context, we conducted a study about continuity and infinite limits, formally presenting the most important steps in the demonstration of the Fundamental Theorem of Algebra, using only elements of elementary mathematics. Finally, we present results about the above theorem and a brief overview of how this theme is developed in high school. In this work, our objective was to contribute to make the theorem and its proof more present and take their role of importance in teaching, without afflicting those who need their understanding or who are involved in its transmission / Mestrado / Matemática em Rede Nacional / Mestra em Matemática em Rede Nacional
|
186 |
Descriptions and Computation of Ultrapowers in L(R)Khafizov, Farid T. 08 1900 (has links)
The results from this dissertation are an exact computation of ultrapowers by measures on cardinals $\aleph\sb{n},\ n\in w$, in $L(\IR$), and a proof that ordinals in $L(\IR$) below $\delta\sbsp{5}{1}$ represented by descriptions and the identity function with respect to sequences of measures are cardinals. An introduction to the subject with the basic definitions and well known facts is presented in chapter I. In chapter II, we define a class of measures on the $\aleph\sb{n},\ n\in\omega$, in $L(\IR$) and derive a formula for an exact computation of the ultrapowers of cardinals by these measures. In chapter III, we give the definitions of descriptions and the lowering operator. Then we prove that ordinals represented by descriptions and the identity function are cardinals. This result combined with the fact that every cardinal $<\delta\sbsp{5}{1}$ in $L(\IR$) is represented by a description (J1), gives a characterization of cardinals in $L(\IR$) below $\delta\sbsp{5}{1}. Concrete examples of formal computations are shown in chapter IV.
|
187 |
The distribution of good multipliers for congruential random number generators.Klincsek, Julia January 1973 (has links)
No description available.
|
188 |
A history of perfect numbersNelson, Susan Powers January 1965 (has links)
M.S.
|
189 |
Preservice Elementary Teachers' Diverlopment Of Rational Number Understanding Through The Social Perspective And The Relationship Among Social And Individual EnvironmentsTobias, Jennifer 01 January 2009 (has links)
A classroom teaching experiment was conducted in a semester-long undergraduate mathematics content course for elementary education majors. Preservice elementary teachers' development of rational number understanding was documented through the social and psychological perspectives. In addition, social and sociomathematical norms were documented as part of the classroom structure. A hypothetical learning trajectory and instructional sequence were created from a combination of previous research with children and adults. Transcripts from each class session were analyzed to determine the social and sociomathematical norms as well as the classroom mathematical practices. The social norms established included a) explaining and justifying solutions and solution processes, b) making sense of others' explanations and justifications, c) questioning others when misunderstandings occur, and d) helping others. The sociomathematical norms established included determining what constitutes a) an acceptable solution and b) a different solution. The classroom mathematical practices established included ideas related to a) defining fractions, b) defining the whole, c) partitioning, d) unitizing, e) finding equivalent fractions, f) comparing and ordering fractions, g) adding and subtracting fractions, and h) multiplying fractions. The analysis of individual students' contributions included analyzing the transcripts to determine the ways in which individuals participated in the establishment of the practices. Individuals contributed to the practices by a) introducing ideas and b) sustaining ideas. The transcripts and student work samples were analyzed to determine the ways in which the social classroom environment impacted student learning. Student learning was affected when a) ideas were rejected and b) ideas were accepted. As a result of the data analysis, the hypothetical learning trajectory was refined to include four phases of learning instead of five. In addition, the instructional sequence was refined to include more focus on ratios. Two activities, the number line and between activities, were suggested to be deleted because they did not contribute to students' development.
|
190 |
On Exponentially Perfect Numbers Relatively Prime to 15Kolenick, Joseph F., Jr. 03 December 2007 (has links)
No description available.
|
Page generated in 0.045 seconds