• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 44
  • 44
  • 18
  • 12
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Laboratory studies of biogeochemical processes in wetlands subject to simulated climate change

Dowrick, David John January 1998 (has links)
No description available.
2

Aspects of the restoration of chalk grassland on ex-arable land

Stagg, Penny Georgina January 1996 (has links)
No description available.
3

The microbial communities and nutrient availability in pre and post harvested lodgepole pine stands of west-central Alberta

Mascarenhas, Ashley Canice 31 March 2011
All organisms within a forested system play a role in the biogeochemical cycle, not only within the forest but also within the global community. Soil microorganisms are a vital part of this cycle, as they sequester or make nutrients available for the development of the forest environment. When a disturbance event occurs, changes to the environment occur; however, it is unclear how these changes affect the soils microbial community. This 2-year (2007 and 2008) study was carried out to obtain a preliminary assessment of the microbial community structure and nutrient (nitrogen and phosphorus) availability within lodgepole pine stands of the Boreal Plain ecozone in west-central Alberta. Six stands of different ages were selected to determine the differences between pre and post harvest. Nutrient flux measurements were conducted using plant root simulator (PRS) probes to investigate the changes in nutrient availability. The microbial community structures were determined using two biochemical methods. The first one was a community level physiological profile (CLPP), which provides information concerning the functional characteristics of the microbial communities. Phospholipid fatty acid (PLFA) analysis provides information about the physiological characteristics of the microbial community. Analysis of the PRS probes results varied for the two nutrients: phosphorus (P) and nitrogen (N). Nitrogen availability was determined by examining the fluxes of ammonium and nitrate to the PRS probes. These did not show a strong relationship between the different aged stands during 2007 or 2008. In addition, no statistical difference was shown between the 2007 and 2008 data compared to the LFH or the mineral soil of the stands. Phosphorus, however, did show a potential trend where there was an initial increase of available P after harvest and then a gradual decrease, as the forest stands matured. This was strongly observed within the LFH, while there was a slight increase in the mineral layer. These trends remained consistent over the two-year period showing a gradual decrease in P flux to the PRS probes as a stand aged even in just one year. The microbial communities did not show a strong change after a forest-harvesting event. When examining the functional groups, there was a drastic shift in the LFH layer microbial community over the first sampling season. This change remained the same within the beginning of the second sampling year. This shift occurred in all stands due to an environmental factor, which was suspected to be the increase in moisture during the season. The change in the microbial communities was not observed, however, in the mineral layer of the soil when the functional structure was examined. When the physiological composition of the microbial communities was observed, though, using PLFA, it was apparent that the physiological characteristics of the microbial community had changed in the mineral soil. Furthermore, no physiological change was observed in the microbial communities of the LFH, only a functional change.
4

The microbial communities and nutrient availability in pre and post harvested lodgepole pine stands of west-central Alberta

Mascarenhas, Ashley Canice 31 March 2011 (has links)
All organisms within a forested system play a role in the biogeochemical cycle, not only within the forest but also within the global community. Soil microorganisms are a vital part of this cycle, as they sequester or make nutrients available for the development of the forest environment. When a disturbance event occurs, changes to the environment occur; however, it is unclear how these changes affect the soils microbial community. This 2-year (2007 and 2008) study was carried out to obtain a preliminary assessment of the microbial community structure and nutrient (nitrogen and phosphorus) availability within lodgepole pine stands of the Boreal Plain ecozone in west-central Alberta. Six stands of different ages were selected to determine the differences between pre and post harvest. Nutrient flux measurements were conducted using plant root simulator (PRS) probes to investigate the changes in nutrient availability. The microbial community structures were determined using two biochemical methods. The first one was a community level physiological profile (CLPP), which provides information concerning the functional characteristics of the microbial communities. Phospholipid fatty acid (PLFA) analysis provides information about the physiological characteristics of the microbial community. Analysis of the PRS probes results varied for the two nutrients: phosphorus (P) and nitrogen (N). Nitrogen availability was determined by examining the fluxes of ammonium and nitrate to the PRS probes. These did not show a strong relationship between the different aged stands during 2007 or 2008. In addition, no statistical difference was shown between the 2007 and 2008 data compared to the LFH or the mineral soil of the stands. Phosphorus, however, did show a potential trend where there was an initial increase of available P after harvest and then a gradual decrease, as the forest stands matured. This was strongly observed within the LFH, while there was a slight increase in the mineral layer. These trends remained consistent over the two-year period showing a gradual decrease in P flux to the PRS probes as a stand aged even in just one year. The microbial communities did not show a strong change after a forest-harvesting event. When examining the functional groups, there was a drastic shift in the LFH layer microbial community over the first sampling season. This change remained the same within the beginning of the second sampling year. This shift occurred in all stands due to an environmental factor, which was suspected to be the increase in moisture during the season. The change in the microbial communities was not observed, however, in the mineral layer of the soil when the functional structure was examined. When the physiological composition of the microbial communities was observed, though, using PLFA, it was apparent that the physiological characteristics of the microbial community had changed in the mineral soil. Furthermore, no physiological change was observed in the microbial communities of the LFH, only a functional change.
5

Gambel Oak for Spanish Goats: A Digestion-Balance Evaluation of Nutrient Availability

Dick, Brian L. 01 May 1988 (has links)
Fresh-harvested Gambel oak (Quercus gambelii) browse was mixed with chopped alfalfa hay to formulate six diets , varying in oak content at two phenological stages. Diets included juvenile oak (65 ,80,95%), mature oak (40,80\), and an alfalfa control . Diets we re evaluated for goats using a series of total-collection dige st ion balance trials . Dry matter intake was highest for animal s on mature oak diets, and lowest on diets containing a high percentage of juvenile oak, possibly due to differences in diet dry matter content . Apparent digestibility of dry matter and cell wall components was lowest for mature oak diets, and highest for diets high in juvenile oak. Nitrogen and energy balances were positive in all cases , and all diets provided nitrogen and energy in excess of rnaintenance requirements. This was reflected by weight gains for all animal s in every trial. Fecal and urinary nitrogen losses did not appear to be related to tannin content of the diets, because high-percentage juvenile oak diets resulted in reduced nitrogen outputs , presumably due to reduced nitrogen intakes for these diets. In comparison with previous data using pelleted formulations, the fresh-fed material was consistently higher in digestibility of the various fractions, and associated with lower dry matter intakes.
6

Soil Nutrient Availability Properties of Biochar

Esposito, Nicole C 01 October 2013 (has links) (PDF)
Biochar’s high porosity and negative surface charge allows for numerous soil and plant benefits such as increased water retention, high nutrient availability, and plant growth. By analysing biochar’s effect of all of these factors, a system can be put in place in which soils can be remediated with the proper soil amendments. This report discusses and tests the effects of varying rates of biochar on pH levels, cation exchange capacity, and nutrient exchangeability (of calcium, magnesium, sodium, and potassium) in soil. Corn plants were also grown in soils of varying amendment types and analysed for plant growth and germination to determine soil effects on the plant. Testing showed significant differences between treatment types in all areas tested except plant germination. A 2:1 ratio of biochar to compost produced the best overall results for the soil used in testing. This treatment maintained acceptable levels of exchangeable nutrients while raising pH and cation exchange capacity, and also raised the plant growth in the soil by 30%. However, for added soil health, gypsum or calcium fertilizer should be added to the soil to remediate low calcium exchangeability. This testing confirmed that biochar does have a strong positive influence on soil and plant health when used in combination with compost.
7

The ecohydrology of the Franschoek Trust Wetland: water, soils and vegetation

Kotzee, Ilse January 2010 (has links)
<p>The research was driven by a need to increase the knowledge base concerning wetland ecological responses, as well as to identify and evaluate the factors driving the functioning of the Franschhoek Trust Wetland. An ecohydrological study was undertaken in which vegetation cover, depth to groundwater, water and soil chemistry were monitored at 14 sites along three transects for a 12 month period. The parameters used include temperature, pH, electrical conductivity (EC), sodium, potassium, magnesium, calcium, iron, chloride, bicarbonate, sulphate, total nitrogen, ammonia, nitrate, nitrite and phosphorus. T-tests and Principal Component Analysis (PCA) were used to analyze trends and to express the relationship between abiotic factors and vegetation.</p>
8

The ecohydrology of the Franschoek Trust Wetland: water, soils and vegetation

Kotzee, Ilse January 2010 (has links)
<p>The research was driven by a need to increase the knowledge base concerning wetland ecological responses, as well as to identify and evaluate the factors driving the functioning of the Franschhoek Trust Wetland. An ecohydrological study was undertaken in which vegetation cover, depth to groundwater, water and soil chemistry were monitored at 14 sites along three transects for a 12 month period. The parameters used include temperature, pH, electrical conductivity (EC), sodium, potassium, magnesium, calcium, iron, chloride, bicarbonate, sulphate, total nitrogen, ammonia, nitrate, nitrite and phosphorus. T-tests and Principal Component Analysis (PCA) were used to analyze trends and to express the relationship between abiotic factors and vegetation.</p>
9

Algal dynamics in an African great lake, and their relation to hydrographic and meteorological conditions

Bootsma, Harvey Allen 02 December 2010 (has links)
Mechanisms controlling the productivity, abundançe and taxonomic composition of phytoplankton in tropical Lake Malawi were examined by monitoring phytoplankton dynamics in 8 regions covering the length of the lake (560 km) over a 10-12 month period, and relating these dynamics to spatio-temporal changes in thermal structure, nutrient availability, and meteorological conditions. In addition, nearshore benthic photosynthetic rates were measured in 7 different months.Spatial and temporal changes in areal photosynthetic rates were due almost entirely to changes in the efficiency of light utilization by the phyroplankton community. An evaluation of potential factors which might influence tight utilization indicates that nutrient availabitity is the most important. Most of the photosynthetic N and P demand is met by internal recycling within the upper 200 m, and therefore spatio-temporal variation of phytoplankton photosynthetic rate is closely related to changes in mixing regime. It is shown that the dominant meteorological factors responsible for changes in the mixing regime were solar radiation and windspeed. A comparison with previous photosynthesis data for Lake Malawi indicates that windspeed is a dominant factor controlling interannual variability. Shallow areas of the lake were more productive than deep areas, due to more intense upwelling and more efficient internal nutrient recycling in shallow waters. Within the littoral zone, benthic photosynthetic rates were very high, accounting for 14% to 28% of total net photosynthesis within the shallow southeast arm. Phytoplankton biomass was not correlated with photosynthetic rate, indicating that biomass loss processes were important in controlling biomass variability. Changes in phytoplankton taxonomic composition were related to changes in mixing regime. Cyanobacteria and chlorophytes were dominant throughout much of the study period, but diatoms made up a significant proportion of total biomass during periods of increased turbulence and nutrient availability. An analysis of phytoplankton surface area : volume ratios revealed that organism shape and size are important determinants in species succession. Previous studies have emphasized the low variability of phytoplankton biomass and photosynthetic rates in tropical lakes, relative to temperate lakes. An inter-lake comparison reveals that this tenet does not apply to large lakes. Fluctuations in the mixing regime of large tropical lakes have an effect on phytoplankton variability similar in magnitude to the effect of fluctuating solar irradiance in large temperate lakes.
10

Algal dynamics in an African great lake, and their relation to hydrographic and meteorological conditions

Bootsma, Harvey Allen 02 December 2010 (has links)
Mechanisms controlling the productivity, abundançe and taxonomic composition of phytoplankton in tropical Lake Malawi were examined by monitoring phytoplankton dynamics in 8 regions covering the length of the lake (560 km) over a 10-12 month period, and relating these dynamics to spatio-temporal changes in thermal structure, nutrient availability, and meteorological conditions. In addition, nearshore benthic photosynthetic rates were measured in 7 different months.Spatial and temporal changes in areal photosynthetic rates were due almost entirely to changes in the efficiency of light utilization by the phyroplankton community. An evaluation of potential factors which might influence tight utilization indicates that nutrient availabitity is the most important. Most of the photosynthetic N and P demand is met by internal recycling within the upper 200 m, and therefore spatio-temporal variation of phytoplankton photosynthetic rate is closely related to changes in mixing regime. It is shown that the dominant meteorological factors responsible for changes in the mixing regime were solar radiation and windspeed. A comparison with previous photosynthesis data for Lake Malawi indicates that windspeed is a dominant factor controlling interannual variability. Shallow areas of the lake were more productive than deep areas, due to more intense upwelling and more efficient internal nutrient recycling in shallow waters. Within the littoral zone, benthic photosynthetic rates were very high, accounting for 14% to 28% of total net photosynthesis within the shallow southeast arm. Phytoplankton biomass was not correlated with photosynthetic rate, indicating that biomass loss processes were important in controlling biomass variability. Changes in phytoplankton taxonomic composition were related to changes in mixing regime. Cyanobacteria and chlorophytes were dominant throughout much of the study period, but diatoms made up a significant proportion of total biomass during periods of increased turbulence and nutrient availability. An analysis of phytoplankton surface area : volume ratios revealed that organism shape and size are important determinants in species succession. Previous studies have emphasized the low variability of phytoplankton biomass and photosynthetic rates in tropical lakes, relative to temperate lakes. An inter-lake comparison reveals that this tenet does not apply to large lakes. Fluctuations in the mixing regime of large tropical lakes have an effect on phytoplankton variability similar in magnitude to the effect of fluctuating solar irradiance in large temperate lakes.

Page generated in 0.0601 seconds