• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Omental Flap Closure of Refractory Wounds: Rat Model

Hishida, Masashi, Toriyama, Kazuhiro, Yamashita, Yoriko, Akatsuka, Shinya, Hayakawa, Akemi, Torii, Shuhei, Kamei, Yuzuru 02 1900 (has links)
No description available.
2

The inflammatory infiltrate of high-grade serous carcinoma omental metastasis

Everitt, Gemma Louise Ann January 2014 (has links)
The aim of this thesis is to investigate the role of inflammatory infiltrates and chemokines in metastasis of high-grade serous ovarian cancer, HGSC, to the omentum using human tissue biopsies and a 3- dimensional (3D) cell culture model. In ten patients with metastatic HGSC, omental tumour deposits contained a prominent leukocyte infiltrate of CD3+ T cells (9% of total cells) and CD68+ macrophages (11% of total cells). The presence of CD68+ macrophages showed a significant positive correlation with tumour cell proliferation analysed by Ki67 expression. Four ovarian cancer cell lines were co-cultured on a 3D model mimicking the microenvironment of the omentum for two weeks. The model was composed of collagen embedded human fibroblasts covered in a confluent layer of human primary mesothelial cells. The mesothelial cells in the 3D model significantly increased the growth (p = 0.002) and invasion (p = 0.0004) of the ovarian cancer cells. CXCL12 is the macrophage chemoattractant and ligand for the major chemokine receptor expressed on ovarian cancer cells. An association between CXCL12 and extracellular matrix remodelling was identified in two independent gene expression microarrays of ovarian cancer biopsies. The expression of CXCL12 in the HGSC omental metastases measured by quantitative Real Time-PCR positively correlated with decorin expression. Antibody mediated neutralisation of CXCL12 reduced growth (p = 0.012) and invasion (p = 0.029) in the 3D model. Mimicking an infiltrate of CD68+ macrophages in this multicellular 3D in vitro system also produced measurable changes in inflammatory cytokine and chemokine expression. There is currently a demand for more accurate models of HGSC and a necessity to study its metastasis that presents itself as the major clinical problem in patients. Therefore the development of this 3D model to mimic tumour-promoting inflammation in HGSC metastasis will provide researchers with an essential tool for testing novel therapeutic strategies.

Page generated in 0.0618 seconds