Spelling suggestions: "subject:"one d’ionisation""
1 |
Etude et optimisation d'une décharge "Plasma Gun" à pression atmosphérique, pour des applications biomédicales / Characterization of an atmospheric pressure pulsed plasma gun for biomedical applicationsSarron, Vanessa 16 December 2013 (has links)
L’utilisation de plasmas, qu’ils soient thermiques ou basse pression, dans le domaine biomédical remonte aux années 1970. Au cours de ces dernières années, les développements concernant des jets de plasma froid à pression atmosphérique, ont permis un élargissement des domaines d’applications biomédicales des plasmas. Au sein du GREMI, un type de jet de plasma a été développé : le Plasma Gun. Le plasma généré par le Plasma Gun se propage sur de longues distances à l’intérieur de capillaires. L’optimisation des traitements visés nécessite une étude approfondie des décharges créées par le Plasma Gun. La caractérisation du Plasma Gun a mis en évidence la génération de Pulsed Atmospheric pressure Plasma Streams ou PAPS, ces derniers se propageant du réacteur jusque dans l’air ambiant où ils génèrent une plume plasma. Ces PAPS présentent deux modes de propagation, au cours desquels une connexion entre le front d’ionisation et le réacteur est présente en permanence. Ces deux modes nommés respectivement Wall-hugging et Homogène, diffèrent principalement par la morphologie et la vitesse de propagation des PAPS qui leur sont associés. Chacun de ces modes présentent donc des caractéristiques qui leur sont propres mais certaines propriétés de propagation leur sont communes, telles que la possibilité de division ou de réunion de PAPS, ainsi que du transfert de PAPS à travers une barrière diélectrique ou via un capillaire métallique creux. L’étude de la plume plasma, propagation des PAPS dans l’air ambiant, a souligné l’importance de la longueur des capillaires sur la longueur du jet plasma. De plus, la génération du plasma a une très forte influence sur l’écoulement du gaz et la structuration du jet lors de son expansion dans l’air. / The use of plasmas, thermic or low pressure, in biomedical goes back up to 1970s. During these last years, atmospheric pressure cold plasma jets have been developed, allowed an increase of biomedical applications of plasmas. In GREMI, a plasma jet was developed : the Plasma Gun (PG). The plasma generated by the PG propagates on long distances inside capillaries. The optimization of the aimed treatments requires a detailed study of the discharges created by the PG. The characterization of the PG highlights the generation of Pulsed Atmospheric pressure Plasma Streams or PAPS, these last ones propagating from the reactor to the capillary outlet (ambient air) where they generate a plasma plume. These PAPS present two propagation modes, during which a connection between the ionization front and the reactor is present permanently. These two modes named respectively Wall-hugging and Homogeneous, differ mainly by the morphology and their propagation velocity. These modes have common characteristics, such as the possibility of division or meeting of PAPS, as well as the transfer of PAPS through a dielectric barrier or via a hollow metal capillary. The study of the plasma plume underlined the importance of the length of capillaries on the length of the plasma jet. Furthermore, the generation of the plasma has a very strong influence on the gas flow and the jet structuration during air expansion.
|
2 |
Etude de la production des espèces réactives de l’oxygène et de l’azote par décharge Plasma Gun à pression atmosphérique pour des applications biomédicales / Study of oxygen and nitrogen reactive species production in atmospheric pressure Plasma Gun discharge for biomedical applicationsDarny, Thibault 27 June 2016 (has links)
En l’espace d’une dizaine d’années, les jets de plasma froid à pression atmosphérique ont su s’imposer comme un outil pertinent pour les applications biomédicales. La simplicité de conception et d’utilisation de ces dispositifs, combinée à leurs facultés de produire des espèces réactives (NO, OH, O …), ont significativement contribué au développement rapide du domaine. Beaucoup d’efforts ont été entrepris dans le développement de diagnostics quantitatifs, pour mesurer la production des espèces réactives dans la plume plasma d’un jet donné. Toutefois, la diversité des géométries de décharge, des sources d’alimentations électriques ou des conditions d’utilisation, rendent les comparaisons d’un jet à l’autre, difficiles. Cette thèse a porté sur l’étude du jet de plasma froid à pression atmosphérique développé au GREMI, le Plasma Gun (hélium, impulsion de tension microseconde). Nous avons étudié les mécanismes de décharge susceptibles de considérablement affecter la production d’espèces réactives, dans des conditions approchantes d’applications biomédicales. La thèse s’articule en trois chapitres principaux : l’étude de la modification de l’écoulement de l’hélium par plasma (par strioscopie) ; l’étude de la propagation du plasma dans le capillaire diélectrique (étude expérimentale et numérique de la dynamique de propagation rapide du plasma et de l’évolution du champ électrique en mélange hélium-azote) ; l’étude de l’interaction du plasma avec une cible conductrice (mesures dans le capillaire et dans la plume de l’évolution spatiale et temporelle de la concentration des métastables de l’hélium, corrélées à des mesures du champ électrique). Ce dernier point est en particulier représentatif de tout jet plasma en condition traitement biomédical in vivo et tend à faire une distinction fondamentale avec les mécanismes de décharge du jet plasma dit « libre », sans obstacle entravant la plume plasma. / Over the past ten years, the cold atmospheric pressure plasma jets (CAPPJ) became useful devices for biomedical applications. Their relatively simple design and use, combine with their ability to produce reactive species (NO, OH, O, …), led to a rapid research growth in this field. A lot of studies have been devoted to quantitative diagnostics development for the reactive species production measurements in the plasma plume. However, it is difficult to compare one jet with another because of the huge variety of discharge geometries, electric power supplies or operating conditions. This thesis deals with the study of the CAPPJ developed in GREMI, the Plasma Gun (helium feeded, microsecond voltage pulse). We have studied discharge mechanisms which strongly impact the reactive species production in near target biomedical application conditions. This study is divided in three parts : the study of helium flow modifications induced by the plasma (strioscopy visualization); the study of plasma propagation inside dielectric capillary (experimental and numerical study of fast plasma propagation dynamic and electric field evolution for helium-nitrogen mixtures); the study of conductive target-plasma interaction (space and time resolved measurements inside the capillary and the plasma plume of helium metastable production, correlated with electric field evolution). The conductive target contact concerns any in vivo biomedical treatments. CAPPJ in front of such a conductive target leads to fundamentally different discharge mechanisms compare to the free jet case.
|
Page generated in 0.1225 seconds