• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Predator interactions within a trophic level : Phalangium opilio L. (Arachnida: Opiliones) and mites (Arachnida: Acari)

Merfield, Charles Norman January 2000 (has links)
This study investigated commensal feeding interactions between the European harvestman (P. opilio L.) and the predatory mites Balaustium spp. and Anystis baccarum L. It also investigated the feeding behaviour of P. opilio. Experiments were conducted in the laboratory using standardised temperature, humidity, photoperiod and experimental arenas, with eggs of the brown blowfly (Calliphora stygia F.) as prey facsimiles. Due to initial difficulties in obtaining enough predatory mites, mite feeding was manually simulated piercing blowfly eggs with a minuten pin. P. opilio consumed significantly more freeze-killed than live blowfly eggs, indicating that freezing induced chemical and/or physical changes to blowfly eggs that are detected by P. opilio. Significantly more manually pierced eggs were consumed by P. opilio compared with unpierced ones, demonstrating that piercing caused a chemical and/or physical to the egg and increased the feeding rates of P. opilio. Different densities of eggs had no effect on the numbers eaten by P. opilio and placing single pierced eggs next to groups of unpierced eggs also had no effect on the numbers of unpierced eggs eaten. These results suggest that P. opilio does not exhibit klinokinesis or orthokinesis to intensify its search for prey around the area where previous prey were located. P. opilio ate significantly more brown blowfly eggs that had previously been fed on by mites, demonstrating that a short term commensal interaction existed. However, further work is required to demonstrate if the relationship is commensal in the longer term. A comparison between hand-pierced and mite-pierced eggs showed that P. opilio ate significantly more of the former indicating that mite and hand piercing were quantitatively different. The potential for, and importance of, other commensal or mutual relationships between predators in agroecosystems is discussed. The lack of klinokinesis and orthokinesis in P. opilio is compared with other predators and parasitoids that do exhibit these behaviours. The means by which prey are detected by P. opilio are discussed in relation to interpreting behaviours such as prey inspection. Concerns about the effect of pre-treatment and handling of sentinel prey and the problems of using prey facsimiles are raised.
2

Predator interactions within a trophic level : Phalangium opilio L. (Arachnida: Opiliones) and mites (Arachnida: Acari)

Merfield, C. N. January 2000 (has links)
This study investigated commensal feeding interactions between the European harvestman (P. opilio L.) and the predatory mites Balaustium spp. and Anystis baccarum L. It also investigated the feeding behaviour of P. opilio. Experiments were conducted in the laboratory using standardised temperature, humidity, photoperiod and experimental arenas, with eggs of the brown blowfly (Calliphora stygia F.) as prey facsimiles. Due to initial difficulties in obtaining enough predatory mites, mite feeding was manually simulated piercing blowfly eggs with a minuten pin. P. opilio consumed significantly more freeze-killed than live blowfly eggs, indicating that freezing induced chemical and/or physical changes to blowfly eggs that are detected by P. opilio. Significantly more manually pierced eggs were consumed by P. opilio compared with unpierced ones, demonstrating that piercing caused a chemical and/or physical to the egg and increased the feeding rates of P. opilio. Different densities of eggs had no effect on the numbers eaten by P. opilio and placing single pierced eggs next to groups of unpierced eggs also had no effect on the numbers of unpierced eggs eaten. These results suggest that P. opilio does not exhibit klinokinesis or orthokinesis to intensify its search for prey around the area where previous prey were located. P. opilio ate significantly more brown blowfly eggs that had previously been fed on by mites, demonstrating that a short term commensal interaction existed. However, further work is required to demonstrate if the relationship is commensal in the longer term. A comparison between hand-pierced and mite-pierced eggs showed that P. opilio ate significantly more of the former indicating that mite and hand piercing were quantitatively different. The potential for, and importance of, other commensal or mutual relationships between predators in agroecosystems is discussed. The lack of klinokinesis and orthokinesis in P. opilio is compared with other predators and parasitoids that do exhibit these behaviours. The means by which prey are detected by P. opilio are discussed in relation to interpreting behaviours such as prey inspection. Concerns about the effect of pre-treatment and handling of sentinel prey and the problems of using prey facsimiles are raised.

Page generated in 0.0446 seconds