Spelling suggestions: "subject:"osteoperforation"" "subject:"perforation""
1 |
Characterizing RNA translocation in the parasitic weed Cuscuta pentagonaLeBlanc, Megan Leanne 03 June 2013 (has links)
The obligate stem parasite Cuscuta pentagona is able to take up host plant mRNA through a specialized organ known as the haustorium. Direct cell-to-cell symplastic connections between two different organisms are rare, and the translocation mechanisms and fate of these RNAs in the parasite is not understood. To characterize this phenomenon, mobile Arabidopsis and tomato mRNAs were identified from microarray and transcriptome sequencing projects and quantified in the host-parasite system. Mobile RNAs were quantified using real time (qRT)-PCR and were found to vary substantially in their rate of uptake and distribution in the parasite. Transcripts of tomato Gibberellic Acid Insensitive (SlGAI) and Cathepsin D Protease Inhibitor (SlPI) can be traced over 30-cm of parasite stem. SlPI was abundant in the C. pentagona stem, but the number of copies decreased substantially within the first eight hours post detachment. Additional studies of mobile RNAs from Arabidopsis, Translationally Controlled Tumor Protein (AtTCTP), Auxin Response Factor (AtARF) and a Salt-inducible Zinc Finger Protein (AtSZFP) supported the idea that mRNA molecules differ in their mechanisms of uptake and mobility between host and parasite. Known phloem-mobile RNAs (SlGAI and AtTCTP) have uptake patterns that differ from each other as well as from other RNAs that are not reported to be phloem mobile (SlPI and AtSZF1). The function of RNAs in plants extend beyond protein translation to include post transcriptional gene silencing or long distance signaling, and mobile RNA in C. pentagona systems offers novel insights into this aspect of plant biology. Studies of cell-to-cell trafficking of RNAs and other macromolecules would be facilitated by the ability to manipulate individual cells. To this end, work was initiated to explore alternative approaches to understanding single cell biology using laser-mediated approaches. Optoperforation, or the use of multiphoton processes to form quasi-free electron plasmas to initiate transient pore formation in plasma membranes, has been demonstrated, but not in cells of an intact plant. This work details a protocol for optoperforation of Arabidopsis epidermal cells to allow for uptake of external dye-labeled dextrans and retention for up to 72 hours, and has the potential for transformation and molecular tagging applications. / Ph. D.
|
2 |
Optoperforation of Intact Plant Cells, Spectral Characterization of Alloy Disorder in InAsP Alloy Disorder in InAsP Alloys, and Bimetallic Concentric Surfaces for Metal-Enhanced Fluorescence in Upconverting NanocrystalsMerritt, Travis Robert 24 January 2014 (has links)
The techniques of optoperforation, spectral characterization of alloy disorder, and metal-enhanced fluorescence were applied to previously unconsidered or disregarded systems in order to demonstrate that such applications are both feasible and consequential. These applications were the subject of three disparate works and, as such, are independently discussed.
Despite being ostensibly restricted to mammalian cells, optoperforation was demonstrated in intact plant cells by means of successful femtosecond-laser-mediated infiltration of a membrane impermeable dextran-conjugated dye into cells of vital Arabidopsis seedling stems. By monitoring the rate of dye uptake, and the reaction of both CFP-expressing vacuoles and nanocellulose substrates, the intensity and exposure time of the perforating laser were adjusted to values that both preserved cell vitality and permitted the laser-assisted uptake of the fluorophore. By using these calibrated laser parameters, dye was injected and later observed in targeted cells after 72 hours, all without deleteriously affecting the vital functions of those cells.
In the context of alloy disorder, photoluminescence of excitonic transitions in two InAsxP1-x alloys were studied through temperature and magnetic field strength dependencies, as well as compositionally-dependent time-resolved behavior. The spectral shape, behavior of the linewidths at high magnetic fields, and the divergence of the peak positions from band gap behavior at low temperatures indicated that alloy disorder exists in the x=0.40 composition while showing no considerable presence in the x=0.13 composition. The time-resolved photoluminescence spectrum for both compositions feature a fast and slow decay, with the slow decay lifetime in x=0.40 being longer than that of x=0.13, which may be due to carrier migration between localized exciton states in x=0.40.
In order to achieve broadband metal-enhanced fluorescence in upconverting NaYF4:Yb,Er nanocrystals, two nanocomposite architectures were proposed that retrofit metallic nanoshells to these lanthanide-doped nanocrystals. The typical monometallic construction was rejected in favor of architectures featuring Au-Ag bimetallic concentric surfaces, a decision supported by the considerable overlap of the calculated plasmon modes of the metallic structures with the emission and absorption spectrum of the nanocrystals. Furthermore, precursors of these nanocomposites were synthesized and photoluminescence measurements were carried out, ultimately verifying that these precursors produce the requisite upconversion emissions. / Ph. D.
|
Page generated in 0.1048 seconds