Spelling suggestions: "subject:"adotava"" "subject:"orotate""
1 |
Geotechnical analysis of large volcanic landslides: The La Orotava events on Tenerife,Canary IslandsHürlimann, Marcel 20 December 1999 (has links)
Los grandes deslizamientos volcánicos son uno de los procesos geológicos más devastadores y pueden representar un importante peligro para la población de las zonas volcánicas. Este tipo de deslizamientos puede sobrepasar volúmenes de decenas o incluso centenares de kilómetros cúbicos. En Tenerife, siete grandes deslizamientos han afectado durante los últimos ~6 millones de años la morfología subaérea y submarina de la isla.En este estudio se ha realizado un extenso análisis de los eventos que han formado el valle de "La Orotava" en la parte Norte de Tenerife. El estudio incluye una investigación de campo, ensayos de laboratorio y análisis de estabilidad. En el laboratorio, las propiedades mecánicas de un suelo residual han sido investigadas mediante cortes directos y ensayos triaxiales. Durante el análisis de estabilidad, los resultados de los ensayos de laboratorio han sido incorporados a diferentes tipos de modelos de estabilidad. Finalmente, las condiciones mecánicas de los modelos dos y tres dimensionales han sido estudiados mediante el método de equilibrio límite y métodos de elementos finitos.Los resultados de los análisis revelan que la estabilidad de las laderas volcánicas puede ser reducida debido a diversos factores, como geológicos, morfológicos, climáticos y volcánicos. Los suelos residuales - bastante comunes en Tenerife - pueden haber actuado como superficie de rotura a causa de su débil comportamiento mecánico. Por otra parte, los estrechos y profundos barrancos han definido los límites laterales de los deslizamientos. Además de ello, los acantilados, el clima húmedo y especialmente la constante intrusión de diques, han llevado la ladera a condiciones de estabilidad críticas. Finalmente, una aceleración sísmica causada por un seísmo fuerte y cercano provocó muy probablemente el deslizamiento catastrófico.En Tenerife, se ha observado una relación temporal entre los colapsos de caldera y los grandes deslizamientos, lo que permite suponer que los fuertes terremotos asociados a los colapsos de caldera hayan provocado los deslizamientos. / Large volcanic landslides are one of the most hazardous of geological processes. They have occurred about once every 25 years during the last 500 years, and are a serious risk for the population due to their great volume and mobility. In spite of their destructive potential there are few comprehensive studies analysing large landslides on volcano flanks, and the mechanisms of such mass movements are not yet resolved. Within the last few years, several hypotheses concerning the potential causes of volcanic landslides have been proposed including processes such as dike intrusion, volcanic spreading, hydrothermal alteration, seismic shocks and caldera collapse events.Tenerife exhibits three large subaerial valleys originated by giant flank failures with ages ranging from Upper Pliocene to Middle Pleistocene. The northern submarine flank of the island is characterised by a voluminous apron of landslide debris. The La Orotava valley has been selected for analysis due to the amount of available data concerning its structure and evolution, and has been used as a test site to validate new assumptions that could be applied to other volcanic areas. The site investigation has revealed that the present morphology of the La Orotava valley was formed by two different failures: one in the western sector and the other in the eastern sector. The mechanical stability of the preslide volcano flank was strongly reduced by geologic, morphologic, climatic and volcanological factors which play a fundamental role in the initiation of the landslides. Widespread residual soils (paleosols) might have acted as potential slip surfaces, while deep erosive canyons probably evolved into the lateral limits of the failures. A high coastal cliff and a humid climate have also contributed to the critical stability conditions. The location of the landslide amphitheatre is perpendicular to the active Dorsal rift zone and adjacent to the Las Cañadas caldera, both important influences on the stability of the volcano slopes. On Tenerife, the relationship between large volcanic landslides and vertical caldera collapses is supported by a temporal coincidence of at least two failures with caldera collapse events.The mechanical behaviour of a residual soil sampled in the La Orotava valley has been analysed. Red coloured residual soils are generally located at the top of phonolitic pyroclastic deposits and are proposed as potential slip surfaces due to their very weak behaviour and their flat, homogeneous characteristics. They represent the only planar surface within the succession making up the volcano slopes. Their weak mechanical behaviour is characterised by volumetric collapse during shearing, a substantial reduction of shear strength for high normal stresses, and a significant increase of pore water pressure during undrained loading. The last feature is fundamental to the stability of volcano flanks since it strongly reduces the soil strength. Earthquakes, common processes in active volcanic areas, and saturated conditions can generate high excess pore pressures indicating the importance of regional climate and seismicity. The stability analysis has considered three different mechanisms: 1) ground acceleration due to seismicity - including both tectonic earthquakes and volcano-tectonic seismic shocks produced by caldera collapse; 2) horizontal stress due to dike intrusion, and; 3) vertical shear stress due to caldera collapse. The results indicate that ground acceleration principally decreases the mechanical stability of volcano flanks, enabling failure. Horizontal stresses due to dike intrusion can also influence slope stability, but preferably act as a preparing factor destabilising the slope, and not as a final triggering mechanism. The 3D numerical simulations show the significant effect of deeply incised canyons creating high shear stress at their base. Applying the results to the La Orotava events, the following scenario is assumed: First, deep narrow canyons, weak residual soils, humid climate, coastal cliff and persistent dike intrusion have significantly reduced the mechanical stability of the volcano slope and determined the limits of the failing mass. Then, seismicity generated by the caldera collapse episode at the end of the Guajara cycle at ~0.56 Ma triggered the catastrophic landslides.The results of the mobility analysis show the important influence of water on the runout distances of landslides. Subaqueous drag forces reduce the velocity, while hydroplaning effects strongly increase the runout distance. For Tenerife, the model indicates that a sliding mass can advance great distances, tens of kilometres away from the island, at water depths exceeding 3000 m, as can be observed in the bathymetric data.
|
Page generated in 0.0445 seconds