Spelling suggestions: "subject:"osteoclasts precursor""
1 |
The Role of Osteocyte Apoptosis on Osteoclast Precursor RecruitmentCheung, Wing-Yee 17 July 2013 (has links)
Osteocytes (resident bone cells) are believed to sense loading-induced interstitial fluid flow in bone and transduce the signals to osteoclasts (bone resorption cells) and osteoblasts (bone formation cells) to regulate bone remodeling. Recent studies have shown that bone disuse causes osteocyte apoptosis, which precedes osteoclast activity at the local remodeling site. Although osteoclast precursors are known to travel via the circulation, the specific mechanism by which they are transported to the remodeling site is unclear.
We hypothesized that lack of fluid flow induces osteocyte apoptosis. Furthermore, we hypothesized that osteocyte populations containing apoptotic osteocytes secrete cytokines that: 1) promote angiogenesis, and 2) activate the endothelium to promote osteoclast precursor adhesion to the endothelium such that osteoclast precursors can be delivered closer and directly to the remodeling site.
In our in vitro studies, we found that lack of oscillatory fluid flow (mimicking mechanical disuse) promotes osteocyte apoptosis. In addition, osteocyte populations containing apoptotic cells promote endothelial cell proliferation, migration, and tubule formation. Inhibition of the potent angiogenic cytokine, vascular endothelial growth factor (VEGF), abrogated osteocyte apoptosis-mediated angiogenesis.
Furthermore, we found that osteocyte populations containing apoptotic cells secrete cytokines that promoted osteoclast precursor adhesion. Upon further investigation, we found that apoptotic osteocytes secreted elevated levels of inflammatory cytokine interleukin 6 (IL-6), and its soluble receptor, sIL-6R. We demonstrated that both IL-6 and sIL-6R are required to activate the endothelium to express ICAM-1. Inhibition of ICAM-1 and IL-6 by blocking antibodies abolished apoptotic osteocyte-mediated osteoclast precursor adhesion.
Our findings suggest for the first time that osteocytes communicate to endothelial cells directly to mediate angiogenesis and osteoclast precursor adhesion. Results from this study may assist in a better understanding of osteoclast precursor recruitment at the initial onset of bone resorption.
|
2 |
The Role of Osteocyte Apoptosis on Osteoclast Precursor RecruitmentCheung, Wing-Yee 17 July 2013 (has links)
Osteocytes (resident bone cells) are believed to sense loading-induced interstitial fluid flow in bone and transduce the signals to osteoclasts (bone resorption cells) and osteoblasts (bone formation cells) to regulate bone remodeling. Recent studies have shown that bone disuse causes osteocyte apoptosis, which precedes osteoclast activity at the local remodeling site. Although osteoclast precursors are known to travel via the circulation, the specific mechanism by which they are transported to the remodeling site is unclear.
We hypothesized that lack of fluid flow induces osteocyte apoptosis. Furthermore, we hypothesized that osteocyte populations containing apoptotic osteocytes secrete cytokines that: 1) promote angiogenesis, and 2) activate the endothelium to promote osteoclast precursor adhesion to the endothelium such that osteoclast precursors can be delivered closer and directly to the remodeling site.
In our in vitro studies, we found that lack of oscillatory fluid flow (mimicking mechanical disuse) promotes osteocyte apoptosis. In addition, osteocyte populations containing apoptotic cells promote endothelial cell proliferation, migration, and tubule formation. Inhibition of the potent angiogenic cytokine, vascular endothelial growth factor (VEGF), abrogated osteocyte apoptosis-mediated angiogenesis.
Furthermore, we found that osteocyte populations containing apoptotic cells secrete cytokines that promoted osteoclast precursor adhesion. Upon further investigation, we found that apoptotic osteocytes secreted elevated levels of inflammatory cytokine interleukin 6 (IL-6), and its soluble receptor, sIL-6R. We demonstrated that both IL-6 and sIL-6R are required to activate the endothelium to express ICAM-1. Inhibition of ICAM-1 and IL-6 by blocking antibodies abolished apoptotic osteocyte-mediated osteoclast precursor adhesion.
Our findings suggest for the first time that osteocytes communicate to endothelial cells directly to mediate angiogenesis and osteoclast precursor adhesion. Results from this study may assist in a better understanding of osteoclast precursor recruitment at the initial onset of bone resorption.
|
3 |
Efeito da toxina distensora citoletal de Aggregatibacter actinomycetemcomitans na atividade osteoclástica. / Aggregatibacter actinomycetemcomitans cytolethal distending toxin effect in osteoclast activity.Kawamoto, Dione 22 May 2014 (has links)
Aggregatibacter actinomycetemcomitans está associado à periodontite agressiva, caracterizada pela intensa reabsorção do osso alveolar. Esta espécie produz a toxina distensora citoletal (AaCDT) que possui atividade de DNAse, e promove o bloqueio das células alvo na fase G2 ou G1/ G2. Por outro lado, CDT ativa a cascata apoptótica pela atividade de PIP3, regulando a proliferação e sobrevivência de linfócitos, pelo bloqueio de Akt. Em monócitos, AaCDT induz aumento da produção de citocinas pró-inflamatórias e inibe a produção de óxido nítrico e fagocitose. Células precursoras de osteoclastos têm origem hematopoiética e sofrem diferenciação em osteoclastos, mediada pelo RANKL, mas outros fatores co-estimulatórios estão envolvidos. A AaCDT induz a produção de RANKL por fibroblastos. Assim, formulamos a hipótese se CDT influenciaria a homeostase óssea por afetar a diferenciação de células precursoras de osteoclastos. O estudo visou determinar o efeito de AaCDT sobre a sobrevivência, diferenciação e atividade em RAW264.7 e BMC. Os dados sugerem que a CDT interfere na homeostase óssea, favorecendo a indução da diferenciação de células precursoras de osteoclastos e alterando o perfil de citocinas produzidas. / Aggregatibacter actinomycetemcomitans is associated with aggressive periodontitis, characterized by severe alveolar bone resorption. This species produces a distending toxin cytolethal (AaCDT) which has DNase activity, and promotes the blocking of target cells in G2 or G1 / G2 phase. On the other hand, CDT activates the apoptotic cascade by PIP3 activity, regulating lymphocyte proliferation and survival by blocking Akt. In monocytes, AaCDT enhances the production of proinflammatory cytokines and inhibits nitric oxide production and phagocytosis. Osteoclast precursor cells are of hematopoietic origin and must undergo differentiation into osteoclasts mediated by RANKL although other co-stimulatory factors are involved. AaCDT induces the production of RANKL by fibroblasts. Thus, CDT is hypothesized to influence bone homeostasis by affecting the differentiation of precursor cells into osteoclasts. This study aimed to determine the effect of AaCDT on survival, differentiation and activity of osteoclasts precursor cells. The data suggested that CDT interfere in bone homeostasis, favoring the differentiation of osteoclasts precursors cells and by altering their cytokines profile.
|
4 |
Efeito da toxina distensora citoletal de Aggregatibacter actinomycetemcomitans na atividade osteoclástica. / Aggregatibacter actinomycetemcomitans cytolethal distending toxin effect in osteoclast activity.Dione Kawamoto 22 May 2014 (has links)
Aggregatibacter actinomycetemcomitans está associado à periodontite agressiva, caracterizada pela intensa reabsorção do osso alveolar. Esta espécie produz a toxina distensora citoletal (AaCDT) que possui atividade de DNAse, e promove o bloqueio das células alvo na fase G2 ou G1/ G2. Por outro lado, CDT ativa a cascata apoptótica pela atividade de PIP3, regulando a proliferação e sobrevivência de linfócitos, pelo bloqueio de Akt. Em monócitos, AaCDT induz aumento da produção de citocinas pró-inflamatórias e inibe a produção de óxido nítrico e fagocitose. Células precursoras de osteoclastos têm origem hematopoiética e sofrem diferenciação em osteoclastos, mediada pelo RANKL, mas outros fatores co-estimulatórios estão envolvidos. A AaCDT induz a produção de RANKL por fibroblastos. Assim, formulamos a hipótese se CDT influenciaria a homeostase óssea por afetar a diferenciação de células precursoras de osteoclastos. O estudo visou determinar o efeito de AaCDT sobre a sobrevivência, diferenciação e atividade em RAW264.7 e BMC. Os dados sugerem que a CDT interfere na homeostase óssea, favorecendo a indução da diferenciação de células precursoras de osteoclastos e alterando o perfil de citocinas produzidas. / Aggregatibacter actinomycetemcomitans is associated with aggressive periodontitis, characterized by severe alveolar bone resorption. This species produces a distending toxin cytolethal (AaCDT) which has DNase activity, and promotes the blocking of target cells in G2 or G1 / G2 phase. On the other hand, CDT activates the apoptotic cascade by PIP3 activity, regulating lymphocyte proliferation and survival by blocking Akt. In monocytes, AaCDT enhances the production of proinflammatory cytokines and inhibits nitric oxide production and phagocytosis. Osteoclast precursor cells are of hematopoietic origin and must undergo differentiation into osteoclasts mediated by RANKL although other co-stimulatory factors are involved. AaCDT induces the production of RANKL by fibroblasts. Thus, CDT is hypothesized to influence bone homeostasis by affecting the differentiation of precursor cells into osteoclasts. This study aimed to determine the effect of AaCDT on survival, differentiation and activity of osteoclasts precursor cells. The data suggested that CDT interfere in bone homeostasis, favoring the differentiation of osteoclasts precursors cells and by altering their cytokines profile.
|
Page generated in 0.0631 seconds