Spelling suggestions: "subject:"oxydation dess acides grau"" "subject:"oxydation dess acides gran""
1 |
Hypertrophie myocardique, risque vasculaire et métabolisme des monocarbones. Conséquences métaboliques et moléculaires dans un modèle de raton carencé en donneurs de méthyles, et chez le sujet âgé / Myocardial hypertrophy, vascular risk and carbon metabolism. Metabolic and molecular consequences in a methyl donor deficient rat model and in the elderlyCardenas, Maira Alejandra 31 January 2011 (has links)
La carence en donneurs de méthyle est assez fréquente dans la période périnatale et au cours du vieillissement. Les donneurs de méthyle alimentaires, l'acide folique et la vitamine B12, influencent la teneur cellulaire en S-adénosylméthionine et S-adénosylhomocystéine et en homocystéine. Le lien entre les donneurs de méthyle et le métabolisme énergétique n'est pas connu, en dépit de leur rôle dans les voies liées à l'épigénétique et la synthèse de molécules méthylées. Nous avons évalué les conséquences d'un régime alimentaire déficient donneur de méthyle, dans le myocarde des ratons au moment du sevrage, soumis à une carence durant la gestation et la lactation. Le régime carencé augmente l'homocystéine plasmatique et S-adénosylhomocystéine myocardique. Les résultats mettent en évidence une cardiomyopathie hypertrophique et un déficit global de l'oxydation des acides gras avec acylcarnitines plasmatiques. Les liens entre le métabolisme des mono-carbones, l'oxydation mitochondriale des acides gras et de cardiomyopathie ont été constatées par des corrélations entre l'homocystéine et les acylcarnitines et le peptide natriurétique de type B. La carence en donneurs de méthyl peut être une condition aggravante de la cardiomyopathie en altérant l'oxydation des acides gras à travers une expression modifiée de PPAR[alpha] et ERR[alpha] et un déséquilibre de l'acétylation / méthylation de PGC1[alpha]. Nous avons montré que l'Hcy et Apo A-I ont été deux facteurs métaboliques déterminants de l'ABI dans une population ambulatoire de volontaires âgés d'une région rurale de la Sicile. L'influence négative de l'Hcy sur Apo A-I et sur le métabolisme des HDL ouvre des nouvelles perspectives sur l'implication de l'Hcy dans la physiopathologie de l'athérothrombose / The deficiency in methyl donors is prevalent in the perinatal period of life and in aging. Dietary methyl donors, folate and vitamin B12, influence the cellular content in Sadenosylmethionine and S-adenosylhomocysteine and increases homocysteine. The link between methyl donors and energy metabolism is not known, despite their role in pathways related to epigenetics and synthesis of methylated molecules. We evaluated the consequences of a diet lacking methyl donors, in myocardium of weaning rats from dams subjected to deficiency during gestation and lactation. The deficient diet increased plasma homocysteine and myocardium Sadenosylhomocysteine. The results evidenced a hypertrophic cardiomyopathy with a global deficit in fatty acid oxidation with increased plasma acylcarnitines. The links between one-carbone metabolism, mitochondrial fatty acid oxidation and cardiomyopathy were ascertained by correlations between hyperhomocysteinemia, short-, medium- and long-chain acylcarnitines, and type-B natriuretic peptide. Methyl donor deficiency may be an aggravating condition of cardiomyopathy by impairing fatty acid oxidation through altered expression of PPAR[alpha] and ERR[alpha] and imbalanced acetylation/methylation of PGC1[alpha]. Finally, in a clinical study we sshowed that the Hcy and Apo A-I were two metabolic factors that influence the « anckle brachial index » in an ambulatory aged Sicilian population. The influence of homocysteine on Apo A-I and HDL metabolism provides new insights on its role on vascular diseases, at a cross-point between atherosclerosis and atherothrombosis
|
2 |
COUP-TFII : sa régulation et son rôle dans le contrôle du métabolisme glucido-lipidique chez le souriceau nouveau-néPlanchais, Julien 06 December 2012 (has links) (PDF)
L'adaptation m etabolique aux changements nutritionnels qui surviennent a la naissance est cruciale pour la survie des mammif eres nouveau-n es. C'est particuli erement important chez la souris nouveau-n e en raison d'un apport lact e en glucides tr es r eduit. De nombreuses voies de signalisation et facteurs de transcription permettent l'adaptation postnatale du m etabolisme a ce r egime, Le travail pr esent e dans cette th ese montre que le r ecepteur nucl eaire COUP-TFII (Chicken Ovalbumin Upstream Promoter, Transcription Factor II) joue un r^ole capital dans cette adaptation nutritionnelle. Ainsi, son expression h epatique augmente d es la naissance. Deux facteurs sont impliqu es dans cette augmentation : le glucagon et le r ecepteur nucl eaire PPAR qui contr^ole directement l'expression de COUP-TFII en se liant a son promoteur via un el ement consensus de type DR-1. Pour etudier la fonction de COUP-TFII, deux techniques d'invalidation ad enovirale (invalidation g enique par ARN interf erence et invalidation fonctionnelle utilisant une prot eine dominante n egative), ont et e utilis ees chez le souriceau de 4 jours. L'invalidation h epatique de COUP-TFII provoque une hypoglyc emie et une hypoc eton emie. A ce stade de d eveloppement, la production h epatique de glucose est asur ee par la n eoglucogen ese qui est energ etiquement d ependante de l'oxydation des acides gras qui fournit des coenzymes r eduits (NADH, H+) et de l'ac etyl-CoA n ecessaires au fonctionnement de certaines enzymes de la n eoglucogen ese. En utilisant la technique du crossover plot, nous avons montr e que deux etapes enzymatiques de la n eoglucog en ese sont inhib ees dans le foie des souris invalid ees pour COUP-TFII : la pyruvate carboxylase (d ependante de l'ac etyl-CoA) et la glyc erad ehyde-3-phosphate deshydrog enase (d ependante du NADH, H+). Ces e ets m etaboliques s'accompagnent de diminutions de l'expression de g enes cl es de la n eoglucog en ese (PEPCK, glucose-6-phosphatase) et de la -oxydation mitochondriale des acides gras (CPT-1, mHMG-CoA synthase, FABP-1). Le ph enotype hypoglyc emique et hypoc eton emique est normalis e par une activation pharmacologique de PPAR (un r egulateur majeur des g enes de l'oxydation des acides gras) sugg erant que l'inhibition de la n eoglucogen ese est la principalement la cons equence d'une diminution de l'oxydation des acides gras. Ces travaux font de COUP-TFIII un coordinateur majeur du m etabolisme h epatique postnatal chez la souris.
|
3 |
Regulation of lipid metabolism in adipocytes and hepatocytes by hexarelin through scavenger receptor CD36Rodrigue-Way, Amélie 04 1900 (has links)
Les sécrétines de l’hormone de croissance (GHRPs) sont de petits peptides synthétiques capables de stimuler la sécrétion de l’hormone de croissance à partir de l’hypophyse via leur liaison au récepteur de la ghréline GHS-R1a. Le GHRP hexaréline a été utilisé afin d’étudier la distribution tissulaire de GHS-R1a et son effet GH-indépendant. Ainsi, par cette approche, il a été déterminé que l’hexaréline était capable de se lier à un deuxième récepteur identifié comme étant le récepteur scavenger CD36. Ce récepteur possède une multitude de ligands dont les particules oxLDL et les acides gras à longue chaîne. CD36 est généralement reconnu pour son rôle dans l’athérogénèse et sa contribution à la formation de cellules spumeuses suite à l’internalisation des oxLDL dans les macrophages/monocytes. Auparavant, nous avions démontré que le traitement des macrophages avec l’hexaréline menait à l’activation de PPARƔ via sa liaison à GHS-R1a, mais aussi à CD36. De plus, une cascade d’activation impliquant LXRα et les transporteurs ABC provoquait également une augmentation de l’efflux du cholestérol. Une stimulation de la voie du transport inverse du cholestérol vers les particules HDL entraînait donc une diminution de l’engorgement des macrophages de lipides et la formation de cellules spumeuses. Puisque CD36 est exprimé dans de multiples tissus et qu’il est également responsable du captage des acides gras à longue chaîne, nous avons voulu étudier l’impact de l’hexaréline uniquement à travers sa liaison à CD36. Dans le but d’approfondir nos connaissances sur la régulation du métabolisme des lipides par CD36, nous avons choisi des types cellulaires jouant un rôle important dans l’homéostasie lipidique n’exprimant pas GHS-R1a, soient les adipocytes et les hépatocytes.
L’ensemble de mes travaux démontre qu’en réponse à son interaction avec l’hexaréline, CD36 a le potentiel de réduire le contenu lipidique des adipocytes et des hépatocytes. Dans les cellules adipeuses, l'hexaréline augmente l’expression de plusieurs gènes impliqués dans la mobilisation et l’oxydation des acides gras, et induit également l’expression des marqueurs thermogéniques PGC-1α et UCP-1. De même, hexaréline augmente l’expression des gènes impliqués dans la biogenèse mitochondriale, un effet accompagné de changements morphologiques des mitochondries; des caractéristiques observées dans les types cellulaires ayant une grande capacité oxydative. Ces résultats démontrent que les adipocytes blancs traités avec hexaréline ont la capacité de se transformer en un phénotype similaire aux adipocytes bruns ayant l’habileté de brûler les acides gras plutôt que de les emmagasiner. Cet effet est également observé dans les tissus adipeux de souris et est dépendant de la présence de CD36. Dans les hépatocytes, nous avons démontré le potentiel de CD36 à moduler le métabolisme du cholestérol. En réponse au traitement des cellules avec hexaréline, une phosphorylation rapide de LKB1 et de l’AMPK est suivie d’une phosphorylation inhibitrice de l’HMG-CoA réductase (HMGR), l’enzyme clé dans la synthèse du cholestérol. De plus, la liaison d'hexaréline à CD36 provoque le recrutement d’insig-2 à HMGR, l’étape d’engagement dans sa dégradation. La dégradation de HMGR par hexaréline semble être dépendante de l’activité de PPARƔ et de l’AMPK. Dans le but d’élucider le mécanisme d’activation par hexaréline, nous avons démontré d’une part que sa liaison à CD36 provoque une déphosphorylation de Erk soulevant ainsi l’inhibition que celui-ci exerce sur PPARƔ et d’autre part, un recrutement de l’AMPK à PGC-1α expliquant ainsi une partie du mécanisme d’activation de PPARƔ par hexaréline.
Les résultats générés dans cette thèse ont permis d’élucider de nouveaux mécanismes d’action de CD36 et d'approfondir nos connaissances de son influence dans la régulation du métabolisme des lipides. / Growth hormone releasing peptides (GHRPs) are small synthetic peptides aimed at stimulating GH release from the pituitary through their binding to ghrelin receptor known as growth hormone secretagogue receptor 1a (GHS-R1a). Using the GHRP, hexarelin to study tissue distribution of GHS-R1a and its GH-independent effect, it was observed that hexarelin was capable of binding to a second receptor identified as scavenger receptor CD36. While having multiple ligands, CD36 is mainly known for binding and internalizing oxLDL and long chain fatty acids. CD36 is thought to play a detrimental role in macrophage derived foam cell formation and development of atherosclerosis. Previously, we have shown that in macrophages, expressing both GHS-R1a and CD36, hexarelin promoted an activation of PPARƔ via GHS-R1a but also through its binding to CD36. This activation led to the induction of the LXRα-ABC transporters pathway and an increase in cholesterol efflux, reducing lipid-laden macrophage content. This positive effect on macrophages was reproduced in apolipoprotein E-null mice on a high fat diet treated with hexarelin. A significant reduction in the size of atherosclerotic lesions was observed while similar increases in the expression of PPARƔ, LXRα and ABC transporters occurred in isolated peritoneal macrophages. CD36 also plays a role in fatty acid uptake, and to further investigate the impact of the interaction of hexarelin with CD36, we aimed at evaluating the role of CD36 in regulating lipid metabolism in cells devoid of GHS-R1a such as adipocytes and hepatocytes.
In the present thesis, we demonstrated through its interaction with hexarelin, the ability of CD36 to decrease intracellular lipid content in both adipocytes and hepatocytes. In adipocytes, hexarelin was able to increase the expression of several genes involved in fatty acid mobilization, fatty acid oxidation but also to induce the expression of the thermogenic markers, PGC-1α and UCP-1. In addition, hexarelin increased the expression of genes involved in mitochondrial biogenesis which was accompanied by mitochondrial morphological changes in agreement with what is usually seen in highly oxidative cells. In support of these findings, we also observed an increase in the activity of cytochrome c oxidase (a component of the respiratory chain) which could reflect an increase in oxidative phosphorylation. The results generated with cultured white adipocytes suggest the ability of hexarelin to promote changes toward a brown fat-like phenotype which also occurred in vivo and was dependent on the presence of CD36. In hepatocytes, CD36 was capable of regulating cholesterol metabolism by rapidly phosphorylating LKB1 and AMPK which subsequently resulted in the inactivating phosphorylation of HMG-CoA reductase, the rate-limiting enzyme in cholesterol synthesis. Hexarelin via CD36 also induced the recruitment of insig-2 to HMGR, the committed step in HMGR degradation while lifting the exerted inhibitory effect of Erk on nuclear receptor PPARƔ activity, and promoting the recruitment of AMPK to PPARƔ coactivator PGC-1α, suggesting an enhanced transcriptional potential of PPARƔ.
The results generated during my graduate studies represent unique and novel mechanisms by which CD36 is capable of regulating lipid metabolism.
|
4 |
Métabolisme énergétique cardiaque fœtal dans un modèle de restriction de croissance intra-utérine chez le ratMonfils, Sarah 03 1900 (has links)
Une diète faible en sodium donnée à des rates lors de la dernière semaine de gestation induit une diminution de l’expansion volumique, du diamètre des artères utérines et du poids des placentas comparativement à des rates témoins. Ces perturbations suggèrent une diminution de la perfusion placentaire affectant l’apport foetal en nutriments. Les ratons naissent avec une restriction de croissance intra-utérine (RCIU). Chez le foetus, le substrat énergétique cardiaque principal est le glucose via la glycolyse. À la naissance, la source principale d’énergie est l’utilisation des acides gras par la β-oxydation. Nous émettons l’hypothèse que dans ce modèle de RCIU, le coeur foetal répond à la diminution d’apport nutritionnel due à une atteinte maternelle en adaptant son métabolisme énergétique cardiaque à la baisse. Les rates gestantes (témoins et recevant la diète faible en sodium) sont sacrifiées au jour 22 de gestation (sur 23). Les coeurs foetaux sont prélevés afin de caractériser les protéines dites « limitantes » in vitro des voies de la glycolyse et de la β-oxydation. Les expressions protéiques de GLUT1, GLUT4, HK1, HK2, CPT2, CPT1β, cytochrome c, PFK1, PKM1/2, mesurées par immunobuvardage de type Western, sont similaires entre les coeurs des foetus RCIU et témoins, mâles et femelles. L’expression protéique de CPT1α est diminuée dans les coeurs des femelles RCIU seulement. Il n’existe aucune différence significative entre les différents groupes quant à l’activité enzymatique de PKM1/2. Nos résultats dressent un profil métabolique général suggérant que le sexe du foetus peut avoir un effet sur la réponse cardiaque foetale à une atteinte du volume sanguin maternel causée par la diète restreinte en sodium. Ce profil métabolique semble démontrer une atteinte du catabolisme des lipides. Afin de bien caractériser cette réponse du mécanisme énergétique, l’activité enzymatique des autres enzymes principales de la glycolyse (HK1, HK2, PFK1), le flux intra-mitochondrial d’acyl CoA à travers les CPTs ainsi que la quantité totale d’acétyl CoA devront être quantifiés. / A low sodium diet was given to pregnant rats during the last week of gestation. This diet diminished the maternal expansion of blood volume, the uterine arteries diameter, and placental weight, when compared to their controls. Together, these results suggest a lower placenta perfusion and a decreased output of nutrients to the fetus. The offspring of these pregnant rats were born with an intra-uterine growth retardation (IUGR). The fetal heart utilizes glucose through glycolysis as the major cardiac energy substrate. At birth, the principal source of energy switches to the oxidation of fatty acids, through β-oxydation. We hypothesized that within our IUGR model, the fetal heart could respond to a diminished nutritional intake due to the maternal input when a decreased cardiac energy metabolism was present. The pregnant rats of both groups (controls and on the low sodium diet) were sacrificed on day 22 of a 23 day gestation. The fetal hearts were then analyzed looking for signs of the limiting proteins glycolysis and β-oxidation. The GLUT1, GLUT4, HK1, HK2, CPT2, CPT1β, cytochrome c, PFK1, PKM1/2 proteins obtained through a Western immunoblot method were similar between the hearts of the IUGR and their control fetuses, whether they were male or female. The protein expression of CPT1α was lower only in female IUGR fetal hearts. There was no significant difference between the groups with respect to the enzymatic activity of PKM1/2. Our results suggest that the metabolic profile changes with regards to the fetus gender and could affect the fetal cardiac metabolism, due to a lower maternal blood flow caused by a sodium controlled diet, by diminishing its lipid metabolism and sparing glucose metabolism. To characterize the energy metabolism, the enzymatic activity of the other principal limiting enzymes glycolysis (HK1, HK2, PFK1), the intra-mitochondrial flux of acyl CoA through the CPTs and the total quantity of acetyl CoA must also be analyzed.
|
5 |
Métabolisme énergétique cardiaque fœtal dans un modèle de restriction de croissance intra-utérine chez le ratMonfils, Sarah 03 1900 (has links)
Une diète faible en sodium donnée à des rates lors de la dernière semaine de gestation induit une diminution de l’expansion volumique, du diamètre des artères utérines et du poids des placentas comparativement à des rates témoins. Ces perturbations suggèrent une diminution de la perfusion placentaire affectant l’apport foetal en nutriments. Les ratons naissent avec une restriction de croissance intra-utérine (RCIU). Chez le foetus, le substrat énergétique cardiaque principal est le glucose via la glycolyse. À la naissance, la source principale d’énergie est l’utilisation des acides gras par la β-oxydation. Nous émettons l’hypothèse que dans ce modèle de RCIU, le coeur foetal répond à la diminution d’apport nutritionnel due à une atteinte maternelle en adaptant son métabolisme énergétique cardiaque à la baisse. Les rates gestantes (témoins et recevant la diète faible en sodium) sont sacrifiées au jour 22 de gestation (sur 23). Les coeurs foetaux sont prélevés afin de caractériser les protéines dites « limitantes » in vitro des voies de la glycolyse et de la β-oxydation. Les expressions protéiques de GLUT1, GLUT4, HK1, HK2, CPT2, CPT1β, cytochrome c, PFK1, PKM1/2, mesurées par immunobuvardage de type Western, sont similaires entre les coeurs des foetus RCIU et témoins, mâles et femelles. L’expression protéique de CPT1α est diminuée dans les coeurs des femelles RCIU seulement. Il n’existe aucune différence significative entre les différents groupes quant à l’activité enzymatique de PKM1/2. Nos résultats dressent un profil métabolique général suggérant que le sexe du foetus peut avoir un effet sur la réponse cardiaque foetale à une atteinte du volume sanguin maternel causée par la diète restreinte en sodium. Ce profil métabolique semble démontrer une atteinte du catabolisme des lipides. Afin de bien caractériser cette réponse du mécanisme énergétique, l’activité enzymatique des autres enzymes principales de la glycolyse (HK1, HK2, PFK1), le flux intra-mitochondrial d’acyl CoA à travers les CPTs ainsi que la quantité totale d’acétyl CoA devront être quantifiés. / A low sodium diet was given to pregnant rats during the last week of gestation. This diet diminished the maternal expansion of blood volume, the uterine arteries diameter, and placental weight, when compared to their controls. Together, these results suggest a lower placenta perfusion and a decreased output of nutrients to the fetus. The offspring of these pregnant rats were born with an intra-uterine growth retardation (IUGR). The fetal heart utilizes glucose through glycolysis as the major cardiac energy substrate. At birth, the principal source of energy switches to the oxidation of fatty acids, through β-oxydation. We hypothesized that within our IUGR model, the fetal heart could respond to a diminished nutritional intake due to the maternal input when a decreased cardiac energy metabolism was present. The pregnant rats of both groups (controls and on the low sodium diet) were sacrificed on day 22 of a 23 day gestation. The fetal hearts were then analyzed looking for signs of the limiting proteins glycolysis and β-oxidation. The GLUT1, GLUT4, HK1, HK2, CPT2, CPT1β, cytochrome c, PFK1, PKM1/2 proteins obtained through a Western immunoblot method were similar between the hearts of the IUGR and their control fetuses, whether they were male or female. The protein expression of CPT1α was lower only in female IUGR fetal hearts. There was no significant difference between the groups with respect to the enzymatic activity of PKM1/2. Our results suggest that the metabolic profile changes with regards to the fetus gender and could affect the fetal cardiac metabolism, due to a lower maternal blood flow caused by a sodium controlled diet, by diminishing its lipid metabolism and sparing glucose metabolism. To characterize the energy metabolism, the enzymatic activity of the other principal limiting enzymes glycolysis (HK1, HK2, PFK1), the intra-mitochondrial flux of acyl CoA through the CPTs and the total quantity of acetyl CoA must also be analyzed.
|
6 |
Regulation of lipid metabolism in adipocytes and hepatocytes by hexarelin through scavenger receptor CD36Rodrigue-Way, Amélie 04 1900 (has links)
Les sécrétines de l’hormone de croissance (GHRPs) sont de petits peptides synthétiques capables de stimuler la sécrétion de l’hormone de croissance à partir de l’hypophyse via leur liaison au récepteur de la ghréline GHS-R1a. Le GHRP hexaréline a été utilisé afin d’étudier la distribution tissulaire de GHS-R1a et son effet GH-indépendant. Ainsi, par cette approche, il a été déterminé que l’hexaréline était capable de se lier à un deuxième récepteur identifié comme étant le récepteur scavenger CD36. Ce récepteur possède une multitude de ligands dont les particules oxLDL et les acides gras à longue chaîne. CD36 est généralement reconnu pour son rôle dans l’athérogénèse et sa contribution à la formation de cellules spumeuses suite à l’internalisation des oxLDL dans les macrophages/monocytes. Auparavant, nous avions démontré que le traitement des macrophages avec l’hexaréline menait à l’activation de PPARƔ via sa liaison à GHS-R1a, mais aussi à CD36. De plus, une cascade d’activation impliquant LXRα et les transporteurs ABC provoquait également une augmentation de l’efflux du cholestérol. Une stimulation de la voie du transport inverse du cholestérol vers les particules HDL entraînait donc une diminution de l’engorgement des macrophages de lipides et la formation de cellules spumeuses. Puisque CD36 est exprimé dans de multiples tissus et qu’il est également responsable du captage des acides gras à longue chaîne, nous avons voulu étudier l’impact de l’hexaréline uniquement à travers sa liaison à CD36. Dans le but d’approfondir nos connaissances sur la régulation du métabolisme des lipides par CD36, nous avons choisi des types cellulaires jouant un rôle important dans l’homéostasie lipidique n’exprimant pas GHS-R1a, soient les adipocytes et les hépatocytes.
L’ensemble de mes travaux démontre qu’en réponse à son interaction avec l’hexaréline, CD36 a le potentiel de réduire le contenu lipidique des adipocytes et des hépatocytes. Dans les cellules adipeuses, l'hexaréline augmente l’expression de plusieurs gènes impliqués dans la mobilisation et l’oxydation des acides gras, et induit également l’expression des marqueurs thermogéniques PGC-1α et UCP-1. De même, hexaréline augmente l’expression des gènes impliqués dans la biogenèse mitochondriale, un effet accompagné de changements morphologiques des mitochondries; des caractéristiques observées dans les types cellulaires ayant une grande capacité oxydative. Ces résultats démontrent que les adipocytes blancs traités avec hexaréline ont la capacité de se transformer en un phénotype similaire aux adipocytes bruns ayant l’habileté de brûler les acides gras plutôt que de les emmagasiner. Cet effet est également observé dans les tissus adipeux de souris et est dépendant de la présence de CD36. Dans les hépatocytes, nous avons démontré le potentiel de CD36 à moduler le métabolisme du cholestérol. En réponse au traitement des cellules avec hexaréline, une phosphorylation rapide de LKB1 et de l’AMPK est suivie d’une phosphorylation inhibitrice de l’HMG-CoA réductase (HMGR), l’enzyme clé dans la synthèse du cholestérol. De plus, la liaison d'hexaréline à CD36 provoque le recrutement d’insig-2 à HMGR, l’étape d’engagement dans sa dégradation. La dégradation de HMGR par hexaréline semble être dépendante de l’activité de PPARƔ et de l’AMPK. Dans le but d’élucider le mécanisme d’activation par hexaréline, nous avons démontré d’une part que sa liaison à CD36 provoque une déphosphorylation de Erk soulevant ainsi l’inhibition que celui-ci exerce sur PPARƔ et d’autre part, un recrutement de l’AMPK à PGC-1α expliquant ainsi une partie du mécanisme d’activation de PPARƔ par hexaréline.
Les résultats générés dans cette thèse ont permis d’élucider de nouveaux mécanismes d’action de CD36 et d'approfondir nos connaissances de son influence dans la régulation du métabolisme des lipides. / Growth hormone releasing peptides (GHRPs) are small synthetic peptides aimed at stimulating GH release from the pituitary through their binding to ghrelin receptor known as growth hormone secretagogue receptor 1a (GHS-R1a). Using the GHRP, hexarelin to study tissue distribution of GHS-R1a and its GH-independent effect, it was observed that hexarelin was capable of binding to a second receptor identified as scavenger receptor CD36. While having multiple ligands, CD36 is mainly known for binding and internalizing oxLDL and long chain fatty acids. CD36 is thought to play a detrimental role in macrophage derived foam cell formation and development of atherosclerosis. Previously, we have shown that in macrophages, expressing both GHS-R1a and CD36, hexarelin promoted an activation of PPARƔ via GHS-R1a but also through its binding to CD36. This activation led to the induction of the LXRα-ABC transporters pathway and an increase in cholesterol efflux, reducing lipid-laden macrophage content. This positive effect on macrophages was reproduced in apolipoprotein E-null mice on a high fat diet treated with hexarelin. A significant reduction in the size of atherosclerotic lesions was observed while similar increases in the expression of PPARƔ, LXRα and ABC transporters occurred in isolated peritoneal macrophages. CD36 also plays a role in fatty acid uptake, and to further investigate the impact of the interaction of hexarelin with CD36, we aimed at evaluating the role of CD36 in regulating lipid metabolism in cells devoid of GHS-R1a such as adipocytes and hepatocytes.
In the present thesis, we demonstrated through its interaction with hexarelin, the ability of CD36 to decrease intracellular lipid content in both adipocytes and hepatocytes. In adipocytes, hexarelin was able to increase the expression of several genes involved in fatty acid mobilization, fatty acid oxidation but also to induce the expression of the thermogenic markers, PGC-1α and UCP-1. In addition, hexarelin increased the expression of genes involved in mitochondrial biogenesis which was accompanied by mitochondrial morphological changes in agreement with what is usually seen in highly oxidative cells. In support of these findings, we also observed an increase in the activity of cytochrome c oxidase (a component of the respiratory chain) which could reflect an increase in oxidative phosphorylation. The results generated with cultured white adipocytes suggest the ability of hexarelin to promote changes toward a brown fat-like phenotype which also occurred in vivo and was dependent on the presence of CD36. In hepatocytes, CD36 was capable of regulating cholesterol metabolism by rapidly phosphorylating LKB1 and AMPK which subsequently resulted in the inactivating phosphorylation of HMG-CoA reductase, the rate-limiting enzyme in cholesterol synthesis. Hexarelin via CD36 also induced the recruitment of insig-2 to HMGR, the committed step in HMGR degradation while lifting the exerted inhibitory effect of Erk on nuclear receptor PPARƔ activity, and promoting the recruitment of AMPK to PPARƔ coactivator PGC-1α, suggesting an enhanced transcriptional potential of PPARƔ.
The results generated during my graduate studies represent unique and novel mechanisms by which CD36 is capable of regulating lipid metabolism.
|
7 |
Lipotoxicity in diabetic cardiomyopathyHaffar, Taha 07 1900 (has links)
No description available.
|
8 |
Métabolisme de l'acétyl-CoA : modulation pharmacologique, approches thérapeutiques et nouvelles maladies / Acetyl-coA metabolism : pharmacological treatment, therapeutic approaches and new diseasesHabarou, Florence 24 November 2016 (has links)
L’acétyl-coA occupe une place centrale dans le métabolisme intermédiaire. Il constitue le point de jonction de plusieurs voies métaboliques telles que la .-oxydation, la glycolyse, le catabolisme de certains acides aminés, la cétolyse, la cétogenèse et la synthèse d’acides gras. Il est également impliqué dans d’autres processus tels que l’acétylation des protéines. Au cours de mon travail de thèse, je me suis attachée à étudier différents aspects du métabolisme de l’acétyl-coA. La première partie de mon travail a porté sur la modulation pharmacologique de la .- oxydation dans le but de corriger des déficits de cette voie métabolique. L’intérêt de traitements par 400µM de bézafibrate ou 75µM de resvératrol dans les formes modérées de déficit en VLCAD et en CPT2 avait été montré précédemment. Par des méthodes de référence et grâce à la mise au point de nouvelles techniques, j’ai pu montrer sur des fibroblastes de patients déficitaires en LCHAD que des traitements par une combinaison de 35µM de bézafibrate et 30µM de resvératrol permettent d’augmenter les capacités d’oxydation du palmitate en stimulant la synthèse protéique. L’effet de cette combinaison était comparable à celui d’un traitement par 400µM de bézafibrate. Dans un second temps, je me suis intéressée à deux cofacteurs impliqués dans le métabolisme de l’acétyl-coA : l’acide lipoïque, cofacteur de quatre .-cétoacides déshydrogénases (PDHc, BCKDHc, .- KGDHc et GCS) et la riboflavine, cofacteur d’acyl-coA déshydrogénases de la .-oxydation et de déshydrogénases impliquées dans le catabolisme des acides aminés ramifiés. Ainsi, j’ai participé à la description d’anomalies du métabolisme de l’acide lipoïque, un nouveau groupe de maladies héréditaires du métabolisme caractérisé par un déficit combiné en .-cétoacides déshydrogénases. Par ailleurs, j’ai pu montrer qu’une hyperprolinémie constitue un biomarqueur intéressant pour le diagnostic d’acidurie glutarique de type II primaire ou secondaire, ces dernières pouvant se rencontrer en cas d’anomalie du métabolisme de la riboflavine. J’ai également évalué l’utilisation d’un mélange racémique de L,D-3-hydroxybutyrate afin de corriger les déficits énergétiques induits par un déficit en PDHc ou GLUT1. Via la cétolyse, le L,D-3- hydroxybutyrate génère de l’acétyl-coA. De façon surprenante, l’administration de ce composé s’est traduite par une amélioration de l’état clinique des patients atteints de déficits en PDHc, alors qu’une dégradation a été observée chez les patients atteints de déficits en GLUT1. Cette évolution différente pourrait souligner l’importance de l’anaplérose chez les patients déficitaires en GLUT1. Enfin, la dernière partie de mon travail de thèse porte sur la description d’un patient atteint d’une forme modérée de déficit en pyruvate carboxylase, cette enzyme étant régulée par l’acétyl-coA. Les difficultés diagnostiques rencontrées devant ces formes modérées sont rapportées, ainsi que des essais de traitement par des composés anaplérotiques et par le bézafibrate, malheureusement sans bénéfice net que ce soit in vitro ou in vivo. En conclusion, le métabolisme de l’acétyl-coA est altéré dans de nombreuses maladies héréditaires du métabolisme, dont certaines sont de description récente. Il peut être modulé par différentes approches pharmacologiques. Le développement de nouvelles techniques et notamment les analyses de flux métaboliques fournissent des outils utiles à son exploration et à l’étude de nouveaux traitements. / Acetyl-CoA is crucial for intermediary metabolism. It is at the crossroad of several metabolic pathways such as beta-oxidation, glycolysis, aminoacid catabolism, ketolysis, and fatty acid synthesis. It is also involved in other processes such as protein acetylation. In this document I studied different aspects of acetyl-CoA metabolism. First, I tried to correct fatty acid oxidation defects through pharmacological approach. Thanks to well- known methods and new ones, I showed that a combination of 30µM resveratrol and 35µM bezafibrate increased fatty acid oxidation capacities by increasing protein synthesis, as well as 400µM bezafibrate. Acetyl-CoA metabolism is also altered due to cofactors defects such as lipoic acid or riboflavine deficiency. I was involved in new diseases description and research for new biomarkers in this context. PDHc and GLUT1 deficiency are two different diseases with the same consequence : a defect in acetyl- CoA production from glucose. In order to improve patients’ quality of life, I evaluated the substitution of ketogenic diet with a racemic mix of L,D-3-hydroxybutyrate in PDHc and GLUT1 deficiency. The clinical evolution of patients was strikingly different, with an improvement in PDHc patients, whereas a degradation was noticed in GLUT1 patients. This difference might underline the role of anaplerosis in GLUT1 deficiency. Finally, I evaluated anaplerotic treatment and bezafibrate treatment in pyruvate carboxylase deficiency, an enzyme allosterically regulated by acetyl-CoA. To conclude, acetyl-CoA metabolism is altered in numerous inherited errors of metabolism, some of them being recently described. It can be modulated by pharmacological approaches. The development of new techniques such as metabolic flux analysis are useful for its study and for new treatments evaluation.
|
Page generated in 0.1672 seconds