161 |
Ultrasound imaging of oxidative stress in vivo with chemically generated gas microbubblesPerng, John Kangchun 30 March 2011 (has links)
Ultrasound contrast agents (UCA) have tremendous potential for in vivo molecular imaging because of their high sensitivity and great spatial resolution of ultrasound imaging. However, the diagnostic potential of UCAs has been difficult to exploit because current contrast agents are based on pre-formed microbubbles, which can only detect cell surface receptors. In this work, we demonstrated that chemical reactions that generate gas forming molecules can be used to perform molecular imaging by ultrasound in vivo. This new approach for generating ultrasound contrast agents was demonstrated by imaging reactive oxygen species (ROS) in vivo with allylhydrazine, a compound that is converted into nitrogen and propylene gas after reacting with radical oxidants. We demonstrated that allylhydrazine encapsulated within liposomes (termed APLs) can detect a 10 uM concentration of radical oxidants by ultrasound, and can image oxidative stress in mice, induced by lipopolysaccharide (LPS), using a clinical ultrasound machine. We showed that a 1-2% increase in gas concentration above saturation can be detected acoustically and suggest that numerous biological targets can be imaged via appropriately designed gas forming reactions. This work was the first demonstration of in vivo imaging of ROS using ultrasound, and this work presented a new strategy to generate gas bubbles from reactions involving radical oxidants. We anticipate numerous applications of chemically generated microbubbles, given the excellent spatial resolution of ultrasound imaging, its widespread clinical use and its high sensitivity to detect gas bubbles.
|
162 |
Role of endothelin-1 in the regulation of the swelling-activated Cl- current in atrial myocytesDeng, Wu. January 1900 (has links)
Thesis (Ph.D.)--Virginia Commonwealth University, 2009. / Prepared for: Dept. of Physiology. Title from resource description page. Includes bibliographical references.
|
163 |
Metal-induced generation of reactive oxygen species and related cellular inuryLeonard, Stephen S., January 1900 (has links)
Thesis (Ph. D.)--West Virginia University, 2002. / Title from document title page. Document formatted into pages; contains xi, 148 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references.
|
164 |
Mechanisms of Cr(VI)-induced carcinogenesis the involvement of reactive oxygen species and signal transduction pathway /Wang, Suwei. January 2001 (has links)
Thesis (Ph. D.)--West Virginia University, 2001. / Title from document title page. Document formatted into pages; contains viii, 124 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references.
|
165 |
Remodeling of the pulmonary microenvironment controls transforming growth factor-beta activation and alveolar type II epithelial to mesenchymal transitionDysart, Marilyn Markowski 08 June 2015 (has links)
Pulmonary fibrosis is a potentially deadly pathology characterized by excessive deposition of extracellular matrix (ECM), increased tissue stiffness, and loss of tissue structure and function. Recent evidence has suggested epithelial to mesenchymal transition (EMT), the transdifferentiation of an epithelial cell into a mesenchymal fibroblast, is one mechanism that results in the accumulation of myofibroblasts and excessive deposition of ECM. EMT is a highly orchestrated process involving the integration of biochemical signals from specific integrin mediated interactions with ECM proteins and soluble growth factors including TGFβ. TGFβ, a potent inducer of EMT, can be activated by cell contraction mediated mechanical release of the growth factor from a macromolecular latent complex. Therefore, TGFβ activity and subsequent EMT may be influenced by both the biochemical composition and biophysical state of the surrounding ECM.
Based on these knowns it was first investigated how changes in the biochemical composition of the matrix and changes in tissue rigidity together modulate EMT due to changes in epithelial cell contraction and TGFβ activation. Here we show that integrin specific interactions with fibronectin (Fn) variants displaying both the RGD and PHSRN binding sites facilitate cell binding through α3β1 and α5β1 integrins, and that these interactions maintain an epithelial phenotype despite engagement of increased tissue rigidities. Conversely, Fn fragments that facilitate cell binding through αv integrins drive TGFβ activation and subsequent EMT even while engaging soft underlying substrates.
Adding to the complexity of studying mechanisms that contribute to pulmonary fibrosis, is exposure of the lung to injuries from environmental particulates. Therefore, we investigated how EMT is altered in response to particulate matter (PM). Here we show that PM exposure further drives TGFβ activation, EMT, and increases intracellular levels of reactive oxygen species (ROS). Additionally, cells binding the ECM through α5β1 and α3β1 integrins only partially recover an epithelial phenotype, suggesting ROS may be a secondary driver of TGFβ and EMT. Taken together these results suggest dynamic changes to the ECM microenvironment are major contributors to the control of EMT responses and provide insights into the design of biomaterial-based microenvironments for control of epithelial cell phenotype.
|
166 |
Study of tin oxide for hydrogen gas sensor applicationsAnand, Manoj 01 June 2005 (has links)
Tin oxide (SnO2) has been investigated and used as a gas sensing material for numerous applications from the very start of the sensor industry. Most of these sensors use semiconductors (mostly SnO2) as the sensing material. In this work, SnO2 was prepared using 2 techniques: firstly the MOCVD where we dope the sample with fluorine and secondly sputtering technique where samples are undoped in our case. These samples were tested at different conditions of temperature varying from room temperature to 150 degrees C, in ambient gas atmosphere of 200 CC Nitrogen (N2). The typical thickness of the sputtered samples was 1500 A with a sheet resistance of 300; and these sputtered samples were found to be more porous. These samples when tested in room temperature showed a change of -4 [mu]A change for 10% and -9 [mu]A for 90% of H2.
While at higher temperatures (150 degrees C) the current change for 10% increased from -4 [mu[A to -2 mA showing that higher ambient temperatures increased the sensitivity of the samples. The repeatability of the samples after a period of 3 days were found to be well within 10%. The samples prepared by MOCVD were fluorine doped, the samples were conductive to 1 order of magnitude more than the sputtered ones. 3 different samples of approximate thicknesses 3000, 6000 and 9000 A were prepared and tested in this work, with typical resistivity of 6 /cm and the grains in this case are typically more compact. The conductive samples showed no response at room temperature, including the 6000 and 9000 A samples. While at higher temperatures (150degreesC) the 3000 A sample showed very sensitive response to H2. Also noticed was that the response was linear compared to the sputtered samples. The samples showed very good repeatability and sensitivity.
|
167 |
Gender and Cocaine Use Influence the Expression of Urinary Markers of Inflammation and Oxidative StressBourgeois, Marie Meagher 19 October 2010 (has links)
The purpose of this study was to investigate whether or not gender differences may be present in the expression of a number of urinary proteins which may serve as markers of inflammation and oxidative stress. Males and females have different patterns of illness and different life spans, suggesting basic biological traits exert significant control on the incidence of rhabdomyolysis, renal failure, atherosclerosis, myocardial ischemia, myocardial contraction band formation, autoimmune disorders and general inflammatory diseases. Men are at greater risk for cardiovascular disease; however women, particularly elderly women, have higher fatality rates due to heart failure. Renal diseases progress far more quickly in men, possibly due to testosterone. Men also have higher kidney bulk related to androgen expression. Gender disparity may be most obvious in autoimmune disorders; of the estimated 8.5 million people diagnosed with autoimmune disorders, approximately 80% are women. Hashimoto’s thyroiditis, the most common form of hypothyroidism, is up to 10 times more common in women. Systemic Lupus Erythematosus (SLE), an autoimmune disease characterized by acute and chronic inflammation, is 9 times more common in women. Rheumatoid arthritis (RA), an autoimmune disease affecting approximately 1.3 million people in the United States, is four times more common in women. Diabetes mellitus (DM), affecting more than 17 million people – the majority of which are women, is linked to microvascular and macrovascular diseases such as kidney failure, strokes and atherosclerosis. These conditions are linked to physiological changes that may alter the expression of certain biomarkers of inflammation and oxidative stress.
Over the past several decades, it has become increasingly clear that the role of diet, smoking, and other lifestyle choices clearly influence the etiology and pathophysiology of these diseases. The use of drugs, both licit and illicit, has been clearly linked to many of these diseases. Illicit substances, particularly cocaine, have been demonstrated to produce pathophysiological changes to many systems in the body which can greatly influence the progression of existing and drug-induced disease states leading to systemic damage. A relationship between the expression of markers of inflammation, oxidative stress, cardiac damage, or other systemic injury, gender and cocaine use has not been clearly established.
Urine is an important medium for assessment of general health status. It has classically been used to monitor disease states; glucosuria as an indicator of diabetes and renal dysfunction, microorganisms signifying urinary tract or bladder infection, and biomarkers such as human chorionic gonadotropin to confirm pregnancy. Recently urine has been used to assess biomarker expression and disease states. Urine is an ideal clinical tool for toxicological screens; it is readily accessible, non invasive and typically supplied in sufficient quantity to accommodate multiple tests. In this study, urine specimens were collected and analyzed for creatinine, cocaine, total protein, aldosterone, c-reactive protein (hsCRP), myeloperoxidase (MPO), microalbumin (MAB), neutrophil gelatinase-associated lipocalin (NGAL), heat shock protein 90α (hsp90α), vascular endothelial growth factor (VEGF), myoglobin, pro atrial natriuretic peptide (proANP) and interleukins 1α, 1 β , and 6 using ELISA and colorimetric assays.
Urine specimens that tested negative for all illicit substances in the standard National Institute on Drug Abuse (NIDA) 10 panel showed differences in a number of these biomarkers which strongly suggested significant differences between males and females for aldosterone, IL1α and IL1β. In addition, significance is suggested for MPO and CRP. Although sex specific differences in serum expression have been noted for some of the markers in both animal and human models, this has not been previously demonstrated in human urine. This may have implications for what is typically referred to as ‘normal’ values. Gender specific differences were not apparent in urine specimens that tested positive for cocaine. Also, in males only, the levels of myoglobin and aldosterone significantly increased.
|
168 |
Copper and iron complexes of linear and crosslinked polymers as catalysts for phosphoester hydrolysis and oxidative transformation of phenolic and catecholic substratesLykourinou, Vasiliki 01 June 2006 (has links)
The goal of this study is to utilize polymers as macromolecular ligands for the construction of catalysts by formation of coordination complexes with transition metals with the main focus on complexes of Cu(II) and Fe(III) and further determine (a) their catalytic efficiency (b) mechanism of action (c) similarities to enzymatic systems and synthetic metal complexes. The reactions of interest are (1) hydrolytic cleavage of a series of phosphoesters(2) oxidation of catechol type of substrates (3) hydroxylation of phenolic substrates and chlorinated phenols (4) activation of molecular oxygen and/ or hydrogen peroxide (5)oxidative cleavage of DNA plasmid.
The major premise of the study is that by mimicking the macromolecular nature and some structural features of enzymes, polymers can in principle, catalyze chemical transformations with similar efficiencies and specificities and can offer alternatives to peptide based catalysts or simple metal complexes with the advantage of a wider range of building blocks, increased stability and the potential of reusability. The crosslinked resins used contained the functional groups iminodiacetate (chelex resin), diethylenetriamine and tris(2-aminomethylamine) and were based on styrene-divinylbenzene backbone. The catalytic proficiencies of the Fe(III) and the Cu(II) complexes of chelex resin and diethylenetriamine approached 100 and 1000 respectively towards the model phosphodiester BNPP at pH 8.0 and 25°C.
Moreover, the Fe(III) complexes of linear copolymers with repeating unit of three vinylpyridines to one acrylamide (P1) showed selectivity towards phosphodiester hydrolysis over monoesters and phosphonate esters and exhibited catalytic proficiencies approaching 50,000 towards BNPP hydrolysis. Further exploration of the catalytic capabilities of copolymer P1 revealed that Cu(II) complexes of this macromolecular ligand are potentially capable of assembling to active dicopper intermediates found in the catalytic pathways of copper oxygenases like tyrosinase and catechol oxidase and thus were able to accelerate catechol oxidation to ortho-quinones with rate accelerations approaching 10,000 and hydroxylate phenols with rate accelerations close to one million.
The results suggest that these Cu(II)-polymer systems can potentially be used as model systems to further understand metal centered reactive oxygen species (ROS) generated in vivo and can be very promising remediation agents for the dechlorination of persistant chlorine containing pollutants.
|
169 |
An Investigation of Autoxidation and DNA Thermal Cleavage by Polymethine Cyanine Dyes and Analogs in Aqueous SolutionsLi, Ziyi 16 December 2015 (has links)
Studies on a series of polymethine cyanine dyes and analogs (1-24) show that certain near-infrared cyanines are capable of damaging DNA in the absence of light and external reducing agents. Experimental results imply that in this DNA thermal cleavage, the cyanine reduces Cu(II) to Cu(I) which reacts with O2 to generate the reactive oxygen species (ROS) O2∙- and ∙OH. The formation of these ROS is also thought to be responsible for the irreversible bleaching of the dyes in aqueous solutions. A correlation between structural features and DNA thermal cleavage activity as well as dye bleaching is suggested. Long polymethine chains appear to confer instability to cyanines in aqueous solutions and further contribute to undesired thermal DNA cleavage. These drawbacks can be overcome by introducing an electron-withdrawing group to the polymethine bridge of the cyanine dye.
|
170 |
Radical aspects on arthritis : the role of neutrophil generation of nitric oxide and superoxide in inflammatory conditionsCedergren, Jan January 2007 (has links)
The polymorphonuclear neutrophil granulocytes (neutrophils) are gaining renewed interest regarding their involvement in chronic inflammatory disorders, including rheumatoid arthritis (RA). Besides phagocytic and destructive capabilities, neutrophils have regulatory roles, e.g. by influencing responses from dendritic cells and lymphocytes. Several animal models have revealed that neutrophils are crucial for the initiation and maintenance of chronic inflammatory diseases. Neutrophil function is highly dependent on their ability to produce superoxide, an oxygen radical which can be further metabolized to other free radicals. Whether or not neutrophils are capable of producing the oxygen radical nitric oxide (NO˙) has been a matter of debate. In this thesis it was shown that freshly isolated neutrophils from the joint cavity of patients with RA, but not from other arthritis patients, had ongoing intracellular production of superoxide, indicating the processing of ingested material. The finding that joint neutrophils, but seemingly not circulating cells, expressed the NO-inducing enzyme iNOS, led to a series of experiments aimed to elucidate where in the exudative process this enzyme could first be detected. We could finally, for the first time, present evidence that human neutrophils actually express iNOS constitutively. Our data also suggest that neutrophil iNOS may be membrane associated, thus differing from the cytosolic location in other cell types. Since NOS activity was not demonstrated in isolated cells, the notion that neutrophil iNOS is regulated primarily at the transcriptional level must be questioned. NO production from iNOS requires the presence of its substrate, L-arginine. To test the hypothesis that neutrophil arginase prevents neutrophil NO-production, we investigated whether arginase inhibition affects neutrophil NO-dependent oxidative function. Initial data revealed a difference in the effect of arginase inhibition comparing neutrophil stimulus with a soluble formylated tri-peptide (fMLF) and integrin-mediated stimulation with particle-bound collagen type-1. This led to the hypothesis that integrin-ligation on neutrophils induces extracellular liberation of arginase, which was confirmed both by measuring arginase and its enzyme activity. The findings in this thesis may be important not only regarding the role of neutrophils in chronic joint inflammation, but also as a link in the accelerated atherosclerosis observed in chronic inflammatory disorders, e.g. RA. / Vid reumatiska ledinflammationer ansamlas mycket stora mängder polymorfkärniga neutrofila granulocyter (neutrofiler) inne i den vätskefyllda ledhålan. Neutrofiler har kraftfull destruktiv potential och anses kunna bidra till uppkomst av skada i leden. Då flera djurmodeller av ledinflammation har visat sig omöjliga att initiera i frånvaro av neutrofiler, har intresset för denna celltyp åter ökat efter att de under lång tid har stått i skuggan av andra typer av vita blodkroppar. En viktig del i avdödning av mikroorganismer och cellsignalering är förmågan att bilda fria syreradikaler, t.ex. superoxid (˙O2-) och kväveoxid (NO˙). Denna avhandling belyser aspekter kring produktionen av dessa reaktiva syreprodukter och mekanismer av potentiell betydelse vid ledinflammation. I det första arbetet visas att neutrofiler isolerade ur ledvätska från patienter med ledgångsreumatism (RA) har ett unikt beteende avseende superoxidproduktion jämfört med motsvarande celler från patienter med andra reumatiska sjukdomar. RA-neutrofiler från ledvätska (men inte från blod) producerar superoxid intracellulärt redan i vila och stimulering via vidhäftningsmolekyler ger en snabb ytterligare ökning av denna aktivitet. Fyndet antyder att cellerna är engagerade med hantering av endocyterade partiklar och/eller immunkomplex/immunaggregat. I de båda nästkommande arbetena undersöktes förekomst av det NO˙-producerande enzymet iNOS i neutrofiler. En rad tidigare publikationer har rapporterat motsägelsefulla resultat i denna fråga. Efter en serie experiment kunde vi konstatera att humana neutrofiler uttrycker iNOS konstitutivt, men att både dess cellulära lokalisation och reglering skiljer sig från andra celler. Neutrofiler har nyligen även visats innehålla arginas, ett enzym som konkurrerar med iNOS om bindningen till L-arginin och som därmed kan hämma NO˙-produktion. I det fjärde arbetet undersökte vi därför om hämning av arginas påverkade neutrofilernas funktion och produktion av superoxid. Vi fann att effekterna av arginashämning var större hos celler som stimulerats genom vidhäftning av kollagenklädda partiklar jämfört med en löslig formylerad tri-peptid (fMLF). Vidare, kunde vi visa att vidhäftning av kollagenklädda partiklar medför större extracellulär frisättning av arginas. Med stöd av dessa fynd kunde vi i påföljande försök bekräfta hypotesen att extracellulär frisättning av arginas är större efter vidhäftning av kollagen-partiklar än med fMLF-stimulering. Fysiologiskt är fyndet logiskt då det skulle medföra ökade vidhäftningsmöjligheter för neutrofilen inne i blodbanan genom att begränsa blodkärlets egen NO˙ produktion. Fyndet är också förenligt med den ökade frekvensen hjärt- och kärlsjukdomar vid RA, då en intensiv kontinuerlig utvandring av neutrofiler skulle medföra ökad arginas frisättning, sänkta argininnivåer och endotelial dysfunktion.
|
Page generated in 0.0765 seconds