• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Segregation of Palaemonid Shrimp Along the Shark River Estuary: Implications for Trophic Function

McCarthy, Lauren C. 01 August 2009 (has links)
This study examined the abundance, distribution, and spatiotemporal variation of palaemonid shrimp species in relation to season and salinity in the Shark River Estuary, Everglades National Park (ENP), Florida, USA. Five palaemonid species occurred in the samples: Palaemonetes paludosus, P. pugio, P. intermedius, Palaemon floridanus, and Leander paulensis; L. paulensis was collected only during the wet season. Overall, shrimp catches in traps doubled in the dry season. Catches in the upper estuary were dominated by P. paludosus, particularly in the wet season, while catch per unit effort (CPUE) at the most downstream, highest salinity sites were dominated by Palaemon floridanus. At mid-estuary, several species co-occurred. To investigate spatiotemporal shifts in trophic position of the shrimp, stable-isotope analysis was used. δ15N analyses revealed most species filled similar roles in the community, with the exception of P. paludosus, which shifted from enrichment in the dry season to depletion in the wet season. Palaemonid δ13C values varied between sites and seasons, with shrimp in upstream sites being more depleted than downstream sites. These data suggest that changes in salinity regimes resulting from restoration may result in species replacement, with potential implications for trophic dynamics.

Page generated in 0.0338 seconds