• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Microarray investigation of the role of Pax6 at the PSPB using a novel tauGFP-Pax6 reporter mouse

Carr, Catherine January 2009 (has links)
Pax6 encodes a highly conserved transcriptional regulator that is widely expressed during development of the eye, olfactory bulbs and central nervous system. Pax6-/- mice exhibit severe brain defects, lack eyes and nasal structures, and die at birth. Included among the functions of Pax6 are cell adhesion, cell cycle progression, axon guidance and boundary formation. The pallial-subpallial boundary (PSPB) is both a physical and gene expression boundary separating dorsal and ventral telencephalon. Pax6 is required for this boundary to develop. In Pax6-/- embryos, genes which normally have a sharp border of expression at the PSPB become ectopically expressed and the radial glial fasicles that make up the physical component of the boundary fail to form. There is also an increase in the number of interneurons migrating dorsally across the boundary to enter the cortex while corticofugal axons struggle to cross the PSPB and enter the ventral telencephalon. Here a novel tauGFP-Pax6 reporter mouse, DTy54, is described in which cells capable of expressing Pax6 are tauGFP positive. In general the expression pattern of tauGFP corresponds well with the known Pax6 expression pattern in the eye and forebrain and the gradient of cortical Pax6 expression from high rostro-laterally to low caudo-medially is also recapitulated by tauGFP. The cytoskeletal localisation of the tauGFP also labels cellular processes and the axons projecting from Pax6 positive cells such as those forming the optic nerve can be clearly seen. At E10.5 the forebrain expression patterns of tauGFP and Pax6 correspond exactly, but at later stages tauGFP expression can be seen in areas negative for Pax6. This can be seen at E12.5 in the ventral telencephalon and in both the dorsal and ventral telencephalon at E15.5. Pax6 and tauGFP expression colocalise more closely in the diencephalon. In situ hybridization analysis of Pax6 and tauGFP transcripts suggests that many of the discrepancies in expression seen at the protein level are due to a longer protein half-life for tauGFP than for Pax6. The expression of tauGFP allows the PSPB to be accurately dissected. The cells from this region can then be sorted by FACS to isolate cells expressing high levels of tauGFP and enrich for the Pax6 positive population. Microarray analysis of gene expression is this population of cells in Pax6+/+.DTy54+ and Pax6sey/sey. DTy54+ embryos is described here. This analysis identified many genes that show a significant change in expression at the PSPB in the absence of Pax6 expression including Ngn2, Lhx6, Neurod6 and CyclinD1 and 2. The biological processes and molecular functions in which these genes are involved were examined to provide insight into the role of Pax6 in this population of cells. Several processes previously reported to be regulated by Pax6 were identified together with a number of novel processes with which Pax6 has not formerly been associated. Some of these include cell cycle, neurogenesis, transcription and metabolic and signalling pathways. This study has also identified many novel downstream targets of Pax6, such as Sema3G and PlexinA4, which will help to elucidate the genetic basis for the Pax6sey/sey phenotype at the PSPB. The changes in expression levels of Ngn2, Lhx6 and Gsh2, identified by microarray, were validated by in situ hybridization, which showed a good correspondence with the microarray results.
2

Anatomia e morfogênese da margem do manto da vieira Nodipecten nodosus (L. 1758) (Bivalvia: Pectinidae) / Anatomy and morphogenesis of the mantle margin in the scallop Nodipecten nodosus (L. 1758) (Bivalvia: Pectinidae)

Audino, Jorge Alves 10 November 2014 (has links)
O atual conhecimento sobre a margem do manto em moluscos bivalves é extenso, incluindo informações sobre morfologia, função e diversidade. Bivalves da família Pectinidae, também conhecidos como vieiras, possuem complexa margem palial, organizada em três pregas, incluindo olhos e tentáculos. Questões acerca do desenvolvimento da margem do manto em bivalves continuam amplamente incompreendidas, assim como a relação entre características paliais ao longo dos diferentes estádios do ciclo de vida. Neste contexto, a presente investigação utilizou a espécie de vieira Nodipecten nodosus como modelo para compreensão da morfogênese da margem palial em Pectinidae, com ênfase na origem e diferenciação das pregas paliais e estruturas associadas. Para contemplar esses objetivos, espécimes em diferentes estádios de desenvolvimento larval e pós-metamórfico foram analisados por meio de técnicas integradas de microscopia (i.e., histologia, microscopia eletrônica de varredura e transmissão, e imunocitoquímica aplicada à microscopia confocal). Inicialmente, a margem palial em larvas véliger de N. nodosus não é pregueada, porém, ao longo do desenvolvimento, dois processos de evaginação são determinantes na formação das pregas paliais. O primeiro ocorre no estádio de pedivéliger, originando as pregas externa e interna, bem como o sulco do perióstraco. O segundo ocorre após a metamorfose, sendo responsável pela origem da prega palial mediana a partir da porção interna da prega interna. Os sistemas muscular e nervoso da margem palial têm origem durante o período larval, tornando-se amplamente desenvolvidos posteriormente. Estruturas associadas, como tentáculos e olhos paliais, são formadas apenas após a metamorfose, e compõem a complexa condição final da margem do manto em Pectinidae. Os diferentes tipos tentaculares possuem desenvolvimento e anatomia similar, entretanto diferem quanto ao tamanho, tipo de musculatura, organização ciliar e presença de células glandulares. Os olhos paliais em formação diferenciam-se gradualmente em sentido proximal-distal, essas características morfológicas sugerindo um nível simples de fotopercepção direcional como condição inicial. Os dados aqui apresentados para N. nodosus permitiram propor um modelo geral para o desenvolvimento da margem palial em Pectinidae, além de contribuir para o entendimento da morfogênese dessa região em Bivalvia / Current knowledge of the bivalve mantle margin is extensive, covering several aspects of its morphology, function and diversity. Bivalves from the family Pectinidae, also known as scallops, bear three pallial folds at the mantle margin, including complex structures, such as tentacles and eyes. The development of the bivalve mantle margin is still poorly understood, the morphogenesis and functional anatomy of mantle margin features during developmental stages being enigmatic. The present investigation used the scallop Nodipecten nodosus (L. 1758) as a model species to understand mantle margin morphogenesis in the Pectinidae, with emphasis on the origin and differentiation of pallial folds and associated pallial structures. To achieve these goals, specimens from larval and postmetamorphic stages were thoroughly analyzed by means of integrative microscopy techniques (i.e., histology, scanning and transmission electron microcopy, and immunocytochemistry combined with confocal microscopy). In veliger larvae of N. nodosus, the mantle margin is initially unfolded, two folding processes being crucial for pallial fold establishment during further development. The first one occurs by the pediveliger stage, forming the outer and inner folds, as well as the periostracal groove. The second folding process takes place after metamorphosis and is responsible for the formation of the middle pallial fold from the inner region of the inner mantle fold. The emergence of muscular and nervous systems in the mantle margin occurs early during development, at the larval stage. Associated pallial structures, including tentacles and eyes, develop only after metamorphosis, and contribute to the complex final condition of the mantle margin in Pectinidae. Although different tentacular types have similar development and anatomy, they differ in size, muscle type, ciliary organization, and gland cells distribution. Developing pallial eyes exhibit gradual differentiation in a proximal-distal direction, and their morphological features suggest a simple level of directional photoreception as the initial ocular condition in juveniles. The present investigation conducted with N. nodosus provided a general model to understand mantle margin development in the Pectinidae, as well as insights into the morphogenesis of this region in the Bivalvia
3

Anatomia e morfogênese da margem do manto da vieira Nodipecten nodosus (L. 1758) (Bivalvia: Pectinidae) / Anatomy and morphogenesis of the mantle margin in the scallop Nodipecten nodosus (L. 1758) (Bivalvia: Pectinidae)

Jorge Alves Audino 10 November 2014 (has links)
O atual conhecimento sobre a margem do manto em moluscos bivalves é extenso, incluindo informações sobre morfologia, função e diversidade. Bivalves da família Pectinidae, também conhecidos como vieiras, possuem complexa margem palial, organizada em três pregas, incluindo olhos e tentáculos. Questões acerca do desenvolvimento da margem do manto em bivalves continuam amplamente incompreendidas, assim como a relação entre características paliais ao longo dos diferentes estádios do ciclo de vida. Neste contexto, a presente investigação utilizou a espécie de vieira Nodipecten nodosus como modelo para compreensão da morfogênese da margem palial em Pectinidae, com ênfase na origem e diferenciação das pregas paliais e estruturas associadas. Para contemplar esses objetivos, espécimes em diferentes estádios de desenvolvimento larval e pós-metamórfico foram analisados por meio de técnicas integradas de microscopia (i.e., histologia, microscopia eletrônica de varredura e transmissão, e imunocitoquímica aplicada à microscopia confocal). Inicialmente, a margem palial em larvas véliger de N. nodosus não é pregueada, porém, ao longo do desenvolvimento, dois processos de evaginação são determinantes na formação das pregas paliais. O primeiro ocorre no estádio de pedivéliger, originando as pregas externa e interna, bem como o sulco do perióstraco. O segundo ocorre após a metamorfose, sendo responsável pela origem da prega palial mediana a partir da porção interna da prega interna. Os sistemas muscular e nervoso da margem palial têm origem durante o período larval, tornando-se amplamente desenvolvidos posteriormente. Estruturas associadas, como tentáculos e olhos paliais, são formadas apenas após a metamorfose, e compõem a complexa condição final da margem do manto em Pectinidae. Os diferentes tipos tentaculares possuem desenvolvimento e anatomia similar, entretanto diferem quanto ao tamanho, tipo de musculatura, organização ciliar e presença de células glandulares. Os olhos paliais em formação diferenciam-se gradualmente em sentido proximal-distal, essas características morfológicas sugerindo um nível simples de fotopercepção direcional como condição inicial. Os dados aqui apresentados para N. nodosus permitiram propor um modelo geral para o desenvolvimento da margem palial em Pectinidae, além de contribuir para o entendimento da morfogênese dessa região em Bivalvia / Current knowledge of the bivalve mantle margin is extensive, covering several aspects of its morphology, function and diversity. Bivalves from the family Pectinidae, also known as scallops, bear three pallial folds at the mantle margin, including complex structures, such as tentacles and eyes. The development of the bivalve mantle margin is still poorly understood, the morphogenesis and functional anatomy of mantle margin features during developmental stages being enigmatic. The present investigation used the scallop Nodipecten nodosus (L. 1758) as a model species to understand mantle margin morphogenesis in the Pectinidae, with emphasis on the origin and differentiation of pallial folds and associated pallial structures. To achieve these goals, specimens from larval and postmetamorphic stages were thoroughly analyzed by means of integrative microscopy techniques (i.e., histology, scanning and transmission electron microcopy, and immunocytochemistry combined with confocal microscopy). In veliger larvae of N. nodosus, the mantle margin is initially unfolded, two folding processes being crucial for pallial fold establishment during further development. The first one occurs by the pediveliger stage, forming the outer and inner folds, as well as the periostracal groove. The second folding process takes place after metamorphosis and is responsible for the formation of the middle pallial fold from the inner region of the inner mantle fold. The emergence of muscular and nervous systems in the mantle margin occurs early during development, at the larval stage. Associated pallial structures, including tentacles and eyes, develop only after metamorphosis, and contribute to the complex final condition of the mantle margin in Pectinidae. Although different tentacular types have similar development and anatomy, they differ in size, muscle type, ciliary organization, and gland cells distribution. Developing pallial eyes exhibit gradual differentiation in a proximal-distal direction, and their morphological features suggest a simple level of directional photoreception as the initial ocular condition in juveniles. The present investigation conducted with N. nodosus provided a general model to understand mantle margin development in the Pectinidae, as well as insights into the morphogenesis of this region in the Bivalvia

Page generated in 0.044 seconds