Spelling suggestions: "subject:"palynological -- arizona.""
1 |
Fossil pollen and its bearing on the archaeology of the Lehner Mammoth siteLindsay, Alexander J. January 1958 (has links)
No description available.
|
2 |
Pollen analysis of sediments from Matty WashSchoenwetter, James January 1960 (has links)
No description available.
|
3 |
THE IMPLICATIONS OF ATMOSPHERIC POLLEN RAIN FOR FOSSIL POLLEN PROFILES IN THE ARID SOUTHWEST (AEROBIOLOGY, PALAEOBOTANY, TAPHONOMY, PRESERVATION).O'ROURKE, MARY KAY. January 1986 (has links)
I compared atmospheric and soil pollen values to determine taphonomic influences on pollen in Southwestern soils. Burkard traps sampled atmospheric pollen for six years from multiple sites in Tucson, Arizona. Tauber and soil samples were collected for two years at Tumamoc Hill (Tucson). Morus, Ambrosia, Gramineae, and Chenopodiaceae-Amaranthus characterize Tucson's airborne pollen. Artemisia, Garrya and summer Pinus pollen are transported from the mountains. Annual pollen capture is similar between Burkard and Tauber samplers. Atmospheric pollen is seasonally variable; annual variability is low. Spatial variability among sites is low. Pollen concentrations vary widely among sites, but taxonomic composition remains constant. Reentrained soil pollen comprises 11% of the airborne pollen. Gramineae and Chenopodiaceae-Amaranthus pollen comprise 90% of the reentrained pollen. Pollen reentrainment varies seasonally. High maximum and minimum temperatures, low dew point and moderate wind speeds are associated with maximum atmospheric pollen concentrations. Winds preceding summer storms cause increased pollen concentrations. Deterioration characterizes pollen from soils. Chenopodiaceae-Amaranthus, Ambrosia, Other Compositae and Graminear are commonly found; Morus is rarely found. Pinus, Sphaeralcea, Boerhaavia and Kallstroemia are present in low numbers. These taxa have thick pollen walls, and they resist destruction. Seasonally collected soil samples have similar pollen spectra. Seasonal airborne pollen variability does not affect the soil pollen spectra. Inoculated soil pollen is well preserved, but pollen is lost rapidly. After one year, pollen concentrations approached background levels for seven of the eight pollen taxa tested. Solidago remained an order of magnitude higher. Pollen morphology may play a role in differential pollen loss. Pollen from the inoculated plots is lost through post-mortem transport. Pollen in soils is time-averaged and exhibits little temporal variability. The average airborne pollen spectra differs from the pollen in the soil. Soil pollen was degraded; inoculated plot pollen was well preserved. I conclude airborne pollen contributes little to the soil pollen of Tumamoc Hill. The soil pollen spectra is affected by selective- or non-deposition of airborne pollen (e.g. Morus), differential pollen destruction, and differential post mortem transport.
|
4 |
Late quaternary environments in the eastern Grand Canyon: vegetational gradients over the last 25,000 yearsCole, Kenneth Lee January 1981 (has links)
No description available.
|
5 |
ABSOLUTE POLLEN FREQUENCIES APPLIED TO THE INTERPRETATION OF HUMAN ACTIVITIES IN NORTHERN ARIZONAKelso, Gerald Kay, 1937- January 1976 (has links)
No description available.
|
6 |
The environment of Miami Wash, Gila County, Arizona, A. D. 1100 to 1400Lytle-Webb, Jamie January 1978 (has links)
No description available.
|
7 |
The ethnobotany and phenology of plants in and adjacent to two riparian habitats in southeastern Arizona.Adams, Karen Rogers. January 1988 (has links)
Two riparian habitats in southeastern Arizona provide the setting for a study of 127 plants useful to human foragers. A view of plant part availability is based on annual phenological profiles, and on historic and prehistoric records of plant use. Food choice is limited in March and April, but high August through November. Riparian plants also offer numerous non-food resources. Trees and shrubs serve more needs in relation to number of available species than do perennial herbs (including grasses) and annuals. Southwestern ethnographic literature hints that certain native taxa (Panicum, Physalis, Populus, Salix, Typha and Vitis) might receive special care. Inherent qualities of parts, coupled with ethnographic records of preparation and use, provide a basis for speculation on which parts might survive in an ancient record. Most are expected to disintegrate in open sites. Parts sought for different needs can enter a dwelling via diverse routes that produce confusingly similar archaeological debris. Modern experiments to wash pollen from 14 separate harvests permit evaluation of plant fruit and leaves as pollen traps, to help interpret pollen recovered from ancient dwellings. High amounts of Berberis, Rumex and Ribes pollen, sometimes in clumps or as tetrads, travel on harvested fruit. Arctostaphylos, Monarda, Oxalis, Rhus, Rhamnus, Vitis and Juniperus parts carry lower amounts. Quercus and Gramineae pollen grains travel on parts of other taxa, as well as on their own fruit. The phenological profiles offer insight into group life-form activities in response to local temperature and precipitation trends. Rising and maximum temperatures coincide with intense vegetative and reproductive activity for trees, shrubs, herbaceous perennials, and annuals. Increased levels of precipitation coincide with maximum flowering and fruiting of herbaceous perennials and fall annuals. Limited data on six taxa from Utah generally agrees with observations in this study, suggesting strong genetic control in the phenology of some riparian taxa.
|
Page generated in 0.054 seconds