Spelling suggestions: "subject:"para structure""
1 |
Modélisation et techniques d'optimisation en bio-informatique et fouille de données / Modelling and techniques of optimization in bioinformatics and data miningBelghiti, Moulay Tayeb 01 February 2008 (has links)
Cette thèse est particulièrement destinée à traiter deux types de problèmes : clustering et l'alignement multiple de séquence. Notre objectif est de résoudre de manière satisfaisante ces problèmes globaux et de tester l'approche de la Programmation DC et DCA sur des jeux de données réelles. La thèse comporte trois parties : la première partie est consacrée aux nouvelles approches de l'optimisation non convexe. Nous y présentons une étude en profondeur de l'algorithme qui est utilisé dans cette thèse, à savoir la programmation DC et l'algorithme DC (DCA). Dans la deuxième partie, nous allons modéliser le problème clustering en trois sous-problèmes non convexes. Les deux premiers sous-problèmes se distinguent par rapport au choix de la norme utilisée, (clustering via les normes 1 et 2). Le troisième sous-problème utilise la méthode du noyau, (clustering via la méthode du noyau). La troisième partie sera consacrée à la bio-informatique. On va se focaliser sur la modélisation et la résolution de deux sous-problèmes : l'alignement multiple de séquence et l'alignement de séquence d'ARN par structure. Tous les chapitres excepté le premier se terminent par des tests numériques. / This Ph.D. thesis is particularly intended to treat two types of problems : clustering and the multiple alignment of sequence. Our objective is to solve efficiently these global problems and to test DC Programming approach and DCA on real datasets. The thesis is divided into three parts : the first part is devoted to the new approaches of nonconvex optimization-global optimization. We present it a study in depth of the algorithm which is used in this thesis, namely the programming DC and the algorithm DC ( DCA). In the second part, we will model the problem clustering in three nonconvex subproblems. The first two subproblems are distinguished compared to the choice from the norm used, (clustering via norm 1 and 2). The third subproblem uses the method of the kernel, (clustering via the method of the kernel). The third part will be devoted to bioinformatics, one goes this focused on the modeling and the resolution of two subproblems : the multiple alignment of sequence and the alignment of sequence of RNA. All the chapters except the first end in numerical tests.
|
Page generated in 0.0776 seconds