Spelling suggestions: "subject:"parafoil"" "subject:"parafollicular""
1 |
Autonomous control of parafoil and payload systems using upper surface canopy spoilersScheuermann, Edward J. 21 September 2015 (has links)
With the advent of steerable, ram air parafoil canopies, aerial payload delivery has become a viable alternative for situations involving remote or undeveloped areas, hostile environments, or otherwise inaccessible locations. Autonomously guided systems utilizing such steerable, ram air canopies are typically controlled by symmetric and asymmetric deflection of the canopy trailing edge. Although these systems have demonstrated substantial improvement in landing accuracy over similarly sized unguided systems, their low number of available control channels and limited ability to alter vehicle glide slope during flight makes them highly susceptible to atmospheric gusts and other unknown conditions near the target area. This research aims to improve landing accuracy in such adverse conditions by replacing the standard trailing edge deflection control mechanism in favor of upper surface canopy spoilers. These spoilers operate by opening several spanwise slits in the upper surface of the parafoil canopy thus forming a virtual spoiler from the stream of expelled pressurized air. In particular, estimation of steady-state vehicle flight characteristics in response to different symmetric and asymmetric spoiler openings was determined for two different small-scale test vehicles. Additionally, improvements in autonomous landing accuracy using upper surface spoilers in a combined lateral and longitudinal control scheme was investigated computationally using a high fidelity, 6-DOF dynamic model of the test vehicle and further validated in actual flight experiments with good results. Lastly, a novel in-canopy bleed air actuation system suitable for large-scale parafoil aircraft was designed, fabricated, and flight-tested. The in-canopy system consists of several small, specifically designed wireless winch actuators mounted entirely inside the parafoil canopy. Each in-canopy actuator is capable of opening one or more upper surface canopy spoilers via a unique internal rigging structure. This system demonstrates not only the applicability of bleed air spoiler control for large-scale autonomous parafoil and payload aircraft, but also provides the potential for significant savings in size, weight, and cost of the required actuation hardware for currently fielded systems.
|
2 |
Flight control system for an autonomous parafoilVan der Kolf, Gideon 12 1900 (has links)
Thesis (MScEng)-- Stellenbosch University, 2013. / ENGLISH ABSTRACT: This thesis presents the development of a flight control system (FCS) for an unmanned,
unpowered parafoil and the integration with an existing parafoil system in collaboration with
a team at the University of Cape Town (UCT). The main goal of the FCS is to autonomously
guide the parafoil from an arbitrary deployment position to a desired landing target. A nonlinear
8 degrees of freedom (8-DOF) parafoil model by C. Redelinghuys is incorporated into a
MATLAB Simulink simulation environment. The non-linear model is numerically linearised
and modal decomposition techniques are used to analyse the natural modes of motion. All
modes are determined to be stable but a poorly damped lateral payload relative twist mode
is present which causes large payload yaw oscillations. The FCS is divided into stability
augmentation, control and guidance subcomponents. Stability augmentation is proposed in
the form of a yaw rate damper which provides artificial damping for the oscillatory payload
twist mode. For control, a yaw rate controller is designed with the aim of a fast response
while not exciting the payload twist oscillation. Subsequently, an existing guidance method
is implemented for path following. Autonomous path planning and mission control logic is
created, including an energy management (EM) method to eliminate excess height and a
terminal guidance (TG) phase. The TG phase is the final turn before landing and is the
last chance to influence landing accuracy. A TG algorithm is implemented which generates
an optimal final turn and can be replanned en route to compensate for unknown wind
and other disturbances. The FCS is implemented on existing avionics, integrated with the
parafoil system and verified with hardware in the loop (HIL) simulations. Flight tests are
presented but are limited to remote control (RC) tests that verify the integration of the
avionics and the parafoil system and test preliminary FCS components. / AFRIKAANSE OPSOMMING: Hierdie tesis dra die ontwikkeling voor van ‘n vlug-beheerstelsel (VBS) vir ’n onbemande,
onaangedrewe valskerm-sweeftuig (parafoil), asook die integrasie daarvan met ’n bestaande
stelsel. Die projek is in samewerking met ’n span van die Universiteit van Kaapstad (UCT)
uitgevoer. Die VBS se hoof doel is om die sweeftuig outonoom vanaf ’n arbitrêre beginpunt
na ’n gewensde landingsteiken te lei. ’n Nie-lineêre 8 grade van vryheid sweeftuig model deur
C. Redelinghuys is in die MATLAB Simulink omgewing geïnkorporeer. Die nie-lineêre model
is numeries gelineariseer om ’n lineêre model te verkry, waarna die natuurlike gedrag van die
tuig geanaliseer is. ’n Swak gedempte laterale draai ossillasie van die loonvrag is geïdentifiseer.
Die VBS is opgedeel in stabiliteitstoevoeging, beheer en leiding. ’n Giertempo-demper
(yaw rate damper) is as stabiliteitstoevoeging om die loonvrag ossillasie kunsmatig te demp,
voorgestel. ’n Giertempo-beheerder is ontwerp met die klem op ’n vinnige reaksie terwyl
die opwekking van die loonvrag ossillasie terselfdetyd verhoed word. Daarna is ’n bestaande
metode vir trajekvolging geïmplementeer. Outonome padbeplanning en oorhoofse vlugplan
logika is ontwikkel, insluitend ’n energie-bestuur (EB) metode, om van oortollige hoogte
ontslae te raak, asook ’n terminale leiding (TL) metode. Die TL fase verwys na die finale
draai voor landing en is die laaste kans om die landingsakkuraatheid te beïnvloed. ’n Bestaande
TL algoritme is geïmplementeer wat ’n optimale trajek genereer en in staat is om
vir wind en ander versteurings te kompenseer deur die trajek deurgaans te herbeplan. Die
VBS is op bestaande avionika geïmplementeer, met die sweeftuigstelsel geïntegreer en met
behulp van hardeware in die lus (HIL) simulasies geverifieer. Vlugtoetse is voorgedra, maar
is egter beperk tot radio beheer vlugte wat die korrekte integrasie van die avionika en die
voertuig toets, asook ’n beperkte aantal voormalige VBS toetse.
|
Page generated in 0.0486 seconds