• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 61
  • 12
  • 11
  • 4
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 108
  • 108
  • 108
  • 27
  • 23
  • 22
  • 21
  • 20
  • 17
  • 17
  • 16
  • 16
  • 16
  • 16
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Action potentials in the peripheral auditory nervous system : a novel PDE distribution model

Gasper, Rebecca Elizabeth 01 July 2014 (has links)
Auditory physiology is nearly unique in the human body because of its small-diameter neurons. When considering a single node on one neuron, the number of channels is very small, so ion fluxes exhibit randomness. Hodgkin and Huxley, in 1952, set forth a system of Ordinary Differential Equations (ODEs) to track the flow of ions in a squid motor neuron, based on a circuit analogy for electric current. This formalism for modeling is still in use today and is useful because coefficients can be directly measured. To measure auditory properties of Firing Efficiency (FE) and Post Stimulus Time (PST), we can simply measure the depolarization, or "upstroke," of a node. Hence, we reduce the four-dimensional squid neuron model to a two-dimensional system of ODEs. The stochastic variable m for sodium activation is allowed a random walk in addition to its normal evolution, and the results are drastic. The diffusion coefficient, for spreading, is inversely proportional to the number of channels; for 130 ion channels, D is closer to 1/3 than 0 and cannot be called negligible. A system of Partial Differential Equations (PDEs) is derived in these pages to model the distribution of states of the node with respect to the (nondimensionalized) voltage v and the sodium activation gate m. Initial conditions describe a distribution of (v,m) states; in most experiments, this would be a curve with mode at the resting state. Boundary conditions are Robin (Natural) boundary conditions, which gives conservation of the population. Evolution of the PDE has a drift term for the mean change of state and a diffusion term, the random change of state. The phase plane is broken into fired and resting regions, which form basins of attraction for fired and resting-state fixed points. If a stimulus causes ions to flow from the resting region into the fired region, this rate of flux is approximately the firing rate, analogous to clinically measuring when the voltage crosses a threshold. This gives a PST histogram. The FE is an integral of the population over the fired region at a measured stop time after the stimulus (since, in the reduced model, when neurons fire they do not repolarize). This dissertation also includes useful generalizations and methodology for turning other ODEs into PDEs. Within the HH modeling, parameters can be switched for other systems of the body, and may present a similar firing and non-firing separatrix (as in Chapter 3). For any system of ODEs, an advection model can show a distribution of initial conditions or the evolution of a given initial probability density over a state space (Chapter 4); a system of Stochastic Differential Equations can be modeled with an advection-diffusion equation (Chapter 5). As computers increase in speed and as the ability of software to create adaptive meshes and step sizes improves, modeling with a PDE becomes more and more efficient over its ODE counterpart.
12

Population growth : analysis of an age structure population model

Håkansson, Nina January 2005 (has links)
<p>This report presents an analysis of a partial differential equation, resulting from population model with age structure. The existence and uniqueness of a solution to the equation are proved. We look at stability of the solution. The asymptotic behaviour of the solution is treated. The report also contains a section about the connection between the solution to the age structure population model and a simple model without age structure.</p>
13

Remarks on two Approaches to the Horizontal Cohomology: Compatibility Complex and the Koszul--Tate Resolution

17 May 2001 (has links)
No description available.
14

Population growth : analysis of an age structure population model

Håkansson, Nina January 2005 (has links)
This report presents an analysis of a partial differential equation, resulting from population model with age structure. The existence and uniqueness of a solution to the equation are proved. We look at stability of the solution. The asymptotic behaviour of the solution is treated. The report also contains a section about the connection between the solution to the age structure population model and a simple model without age structure.
15

Energy Shaping for Systems with Two Degrees of Underactuation

Ng, Wai Man January 2011 (has links)
In this thesis we are going to study the energy shaping problem on controlled Lagrangian systems with degree of underactuation less than or equal to two. Energy shaping is a method of stabilization by designing a suitable feedback control force on the given controlled Lagrangian system so that the total energy of the feedback equivalent system has a non-degenerate minimum at the equilibrium. The feedback equivalent system can then be stabilized by a further dissipative force. Finding a feedback equivalent system requires solving a system of PDEs. The existence of solutions for this system of PDEs is guaranteed, under some conditions, in the case of one degree of underactuation. Higher degrees of underactuation, however, requires a more careful study on the system of PDEs, and we apply the formal theory of PDEs to achieve this purpose in the case of two degrees of underactuation. The thesis is divided into four chapters. First, we review the basic notion of energy shaping and state the results for the case of one degree of underactuation. We then devise a general scheme to solve the energy shaping problem with degree of underactuation equal to one, together with some examples to illustrate the general procedure. After that we review the tools from the formal theory of PDEs, as a preparation for solving the problem with two degrees of underactuation. We derive an equivalent involutive system of PDEs from which we can deduce the existence of solutions which suit the energy shaping requirement.
16

Numerical Computations with Fundamental Solutions / Numeriska beräkningar med fundamentallösningar

Sundqvist, Per January 2005 (has links)
Two solution strategies for large, sparse, and structured algebraic systems of equations are considered. The first strategy is to construct efficient preconditioners for iterative solvers. The second is to reduce the sparse algebraic system to a smaller, dense system of equations, which are called the boundary summation equations. The proposed preconditioners perform well when applied to equations that are discretizations of linear first order partial differential equations. Analysis shows that also very simple iterative methods converge in a number of iterations that is independent of the number of unknowns, if our preconditioners are applied to certain scalar model problems. Numerical experiments indicate that this property holds also for more complicated cases, and a flow problem modeled by the nonlinear Euler equations is treated successfully. The reduction process is applicable to a large class of difference equations. There is no approximation involved in the reduction, so the solution of the original algebraic equations is determined exactly if the reduced system is solved exactly. The reduced system is well suited for iterative solution, especially if the original system of equations is a discretization of a first order differential equation. The technique is used for several problems, ranging from scalar model problems to a semi-implicit discretization of the compressible Navier-Stokes equations. Both strategies use the concept of fundamental solutions, either of differential or difference operators. An algorithm for computing fundamental solutions of difference operators is also presented.
17

Solving Partial Differential Equations Using Artificial Neural Networks

Rudd, Keith January 2013 (has links)
<p>This thesis presents a method for solving partial differential equations (PDEs) using articial neural networks. The method uses a constrained backpropagation (CPROP) approach for preserving prior knowledge during incremental training for solving nonlinear elliptic and parabolic PDEs adaptively, in non-stationary environments. Compared to previous methods that use penalty functions or Lagrange multipliers,</p><p>CPROP reduces the dimensionality of the optimization problem by using direct elimination, while satisfying the equality constraints associated with the boundary and initial conditions exactly, at every iteration of the algorithm. The effectiveness of this method is demonstrated through several examples, including nonlinear elliptic</p><p>and parabolic PDEs with changing parameters and non-homogeneous terms. The computational complexity analysis shows that CPROP compares favorably to existing methods of solution, and that it leads to considerable computational savings when subject to non-stationary environments.</p><p>The CPROP based approach is extended to a constrained integration (CINT) method for solving initial boundary value partial differential equations (PDEs). The CINT method combines classical Galerkin methods with CPROP in order to constrain the ANN to approximately satisfy the boundary condition at each stage of integration. The advantage of the CINT method is that it is readily applicable to PDEs in irregular domains and requires no special modification for domains with complex geometries. Furthermore, the CINT method provides a semi-analytical solution that is infinitely differentiable. The CINT method is demonstrated on two hyperbolic and one parabolic initial boundary value problems (IBVPs). These IBVPs are widely used and have known analytical solutions. When compared with Matlab's nite element (FE) method, the CINT method is shown to achieve significant improvements both in terms of computational time and accuracy. The CINT method is applied to a distributed optimal control (DOC) problem of computing optimal state and control trajectories for a multiscale dynamical system comprised of many interacting dynamical systems, or agents. A generalized reduced gradient (GRG) approach is presented in which the agent dynamics are described by a small system of stochastic dierential equations (SDEs). A set of optimality conditions is derived using calculus of variations, and used to compute the optimal macroscopic state and microscopic control laws. An indirect GRG approach is used to solve the optimality conditions numerically for large systems of agents. By assuming a parametric control law obtained from the superposition of linear basis functions, the agent control laws can be determined via set-point regulation, such</p><p>that the macroscopic behavior of the agents is optimized over time, based on multiple, interactive navigation objectives.</p><p>Lastly, the CINT method is used to identify optimal root profiles in water limited ecosystems. Knowledge of root depths and distributions is vital in order to accurately model and predict hydrological ecosystem dynamics. Therefore, there is interest in accurately predicting distributions for various vegetation types, soils, and climates. Numerical experiments were were performed that identify root profiles that maximize transpiration over a 10 year period across a transect of the Kalahari. Storm types were varied to show the dependence of the optimal profile on storm frequency and intensity. It is shown that more deeply distributed roots are optimal for regions where</p><p>storms are more intense and less frequent, and shallower roots are advantageous in regions where storms are less intense and more frequent.</p> / Dissertation
18

Energy Shaping for Systems with Two Degrees of Underactuation

Ng, Wai Man January 2011 (has links)
In this thesis we are going to study the energy shaping problem on controlled Lagrangian systems with degree of underactuation less than or equal to two. Energy shaping is a method of stabilization by designing a suitable feedback control force on the given controlled Lagrangian system so that the total energy of the feedback equivalent system has a non-degenerate minimum at the equilibrium. The feedback equivalent system can then be stabilized by a further dissipative force. Finding a feedback equivalent system requires solving a system of PDEs. The existence of solutions for this system of PDEs is guaranteed, under some conditions, in the case of one degree of underactuation. Higher degrees of underactuation, however, requires a more careful study on the system of PDEs, and we apply the formal theory of PDEs to achieve this purpose in the case of two degrees of underactuation. The thesis is divided into four chapters. First, we review the basic notion of energy shaping and state the results for the case of one degree of underactuation. We then devise a general scheme to solve the energy shaping problem with degree of underactuation equal to one, together with some examples to illustrate the general procedure. After that we review the tools from the formal theory of PDEs, as a preparation for solving the problem with two degrees of underactuation. We derive an equivalent involutive system of PDEs from which we can deduce the existence of solutions which suit the energy shaping requirement.
19

Inverse Problems For Parabolic Equations

Baysal, Arzu 01 November 2004 (has links) (PDF)
In this thesis, we study inverse problems of restoration of the unknown function in a boundary condition, where on the boundary of the domain there is a convective heat exchange with the environment. Besides the temperature of the domain, we seek either the temperature of the environment in Problem I and II, or the coefficient of external boundary heat emission in Problem III and IV. An additional information is given, which is the overdetermination condition, either on the boundary of the domain (in Problem III and IV) or on a time interval (in Problem I and II). If solution of inverse problem exists, then the temperature can be defined everywhere on the domain at all instants. The thesis consists of six chapters. In the first chapter, there is the introduction where the definition and applications of inverse problems are given and definition of the four inverse problems, that we will analyze in this thesis, are stated. In the second chapter, some definitions and theorems which we will use to obtain some conclusions about the corresponding direct problem of our four inverse problems are stated, and the conclusions about direct problem are obtained. In the third, fourth, fifth and sixth chapters we have the analysis of inverse problems I, II, III and IV, respectively.
20

A Mathematical Journey of Cancer Growth

January 2016 (has links)
abstract: Cancer is a major health problem in the world today and is expected to become an even larger one in the future. Although cancer therapy has improved for many cancers in the last several decades, there is much room for further improvement. Mathematical modeling has the advantage of being able to test many theoretical therapies without having to perform clinical trials and experiments. Mathematical oncology will continue to be an important tool in the future regarding cancer therapies and management. This dissertation is structured as a growing tumor. Chapters 2 and 3 consider spheroid models. These models are adept at describing 'early-time' tumors, before the tumor needs to co-opt blood vessels to continue sustained growth. I consider two partial differential equation (PDE) models for spheroid growth of glioblastoma. I compare these models to in vitro experimental data for glioblastoma tumor cell lines and other proposed models. Further, I investigate the conditions under which traveling wave solutions exist and confirm numerically. As a tumor grows, it can no longer be approximated by a spheroid, and it becomes necessary to use in vivo data and more sophisticated modeling to model the growth and diffusion. In Chapter 4, I explore experimental data and computational models for describing growth and diffusion of glioblastoma in murine brains. I discuss not only how the data was obtained, but how the 3D brain geometry is created from Magnetic Resonance (MR) images. A 3D finite-difference code is used to model tumor growth using a basic reaction-diffusion equation. I formulate and test hypotheses as to why there are large differences between the final tumor sizes between the mice. Once a tumor has reached a detectable size, it is diagnosed, and treatment begins. Chapter 5 considers modeling the treatment of prostate cancer. I consider a joint model with hormonal therapy as well as immunotherapy. I consider a timing study to determine whether changing the vaccine timing has any effect on the outcome of the patient. In addition, I perform basic analysis on the six-dimensional ordinary differential equation (ODE). I also consider the limiting case, and perform a full global analysis. / Dissertation/Thesis / Doctoral Dissertation Applied Mathematics 2016

Page generated in 0.1653 seconds