• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 80
  • 43
  • 24
  • 7
  • 1
  • 1
  • Tagged with
  • 157
  • 118
  • 64
  • 61
  • 60
  • 60
  • 60
  • 30
  • 27
  • 15
  • 13
  • 13
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Coatings with Inversely Switching Behavior. New Applications of Core-Shell Hydrogel Particles.

Horecha, Marta 03 February 2011 (has links)
The main goal of this work is design and synthesis of novel composite hydrogel-based core-shell microparticles and their application for fabrication of coatings, which provide the “inverse-switching” behaviour to the surface, namely, to become more hydrophobic in water environment. Since contact angle of heterogeneous surfaces is dependent on the nature and ratio of surface components, an increase of amount of more hydrophobic component on the surface will cause the reducing of surface wettability. It was suggested that core-shell particles having water-swellable hydrogel core and hydrophobic, but permeable for water shell when deposited on the hydrophilic substrate should increase the total amount of hydrophobic component on the surface when the cores of particles will swell in water. During the work different approaches to obtain freely dispersed and surface-immobilized core-shell particles with required structure were developed. Obtained particles were applied for preparation of coatings with ability to display “inverse-switching” behaviour. It was demonstrated that properly designed and properly prepared core-shell particles could be successfully used for creation of smart adaptive coatings having the ability to alter the surface properties upon changing of the environment.
102

O/W Emulsion Stabilised with Clay Particles and Anionic Surfactant as an Oily Sludge Model: Preparation, Characterization and Destabilization with Natural and Synthetic Polyelectrolytes

Rojas Reyna, Rosana del Coromoto 08 March 2011 (has links)
Oily wastewater produced from petroleum and petrochemical refining processes is one of the gravest environmental threats. Oil waste ending up in sewers and dumps each year is equal to 25 times the amount of crude oil spilled in the Exxon Valdez accident (1989). Oil/Water separation covers a broad spectrum of industrial process operations. There are many techniques employed depending on each situation. The byproduct of water recovery from oily wastewater is a sludge rich in oil, surfactants and particles (oily sludge). The oily sludge still contains significant amounts of waters, which need to be recovered prior to its disposal. The use of polyelectrolytes for the flocculation of the emulsified oil and its separation from the aqueous phase is usually one of the steps of the wastewater as well as oily sludge treatment process. The efficiency of polyelectrolytes as floculants is quite often evaluated via trial and error and the appropriate polymer is selected according to the case. Even in scientific investigations it is rather common to use industrial oily sludge samples. The industrial oily sludge is characterized and treated by polyelectrolytes. Nevertheless industrial oily sludge is quite complicated and variable to be approximated by a model. For the systematic study of polyelectrolytes efficiency a stable, realistic and well-defined oily sludge model is necessary. In the present work an oily sludge model was successfully developed and characterized. The model consists on water, oil (kerosene), surfactant (sodium dodecyl sulphate, SDS) and clay particles (Blauton). The emulsifying efficiency of the surfactant and the clay were studied independently. The interactions between the surfactant and the clay including adsorption of the former on the later and cation exchange reactions were investigated. The four components were finally combined to form a series of emulsions varying the relative amounts of the emulsifiers for the highest stability to be encountered. Having concluded on the composition of the oily sludge model the efficiency of various polyelectrolytes was evaluated. Commercial natural (chitosans), synthetic (PolyDADMACs) polyelectrolytes and oilbreaks as well as lab-scale semi-synthetic polymers (modified chitosans) were tested. The flocculation efficiency was determined based on the amount and quality of water that was recovered as well as on the floc stability, size and sedimentation speed. The recovered water was characterized according to the environmental protection agency (EPA). The analysis included measurements on: total organic carbon (TOC), chemical oxygen demand (COD), biochemical oxygen demand (BOD5), total suspended solids (TSS) and pH. Selection of the appropriate flocculant also depends on the type of flocs formed in combination to the treatment following the flocculation. When filtration or centrifugation is used as a post-flocculation process the appropriate polymers are those that form large and porous flocs, as the case of the modified chitosans AG95 and AG97. Clarification devices on the other hand require dense flocs as these produced by the use of PolyDADMACs, commercial chitosans, oilbreaks and modified chitosans GA35, GA41 and AG79. Regarding the water quality, some of the polymers used that have low values of COD, TOC and BOD5, may not need the secondary treatment (biological) prior to discharge, such as P187K (PolyDADMAC) and GA41 (modified chitosan). The others require a biological treatment for the regulation limits to be reached. The pH values of modified chitosans (except of AG97), lab-scale PolyDADMACs and an oilbreak (OCAA) are all in range of the regulation limits. The applicability of biopolymers as flocculants for oil sludge dewatering is a relatively new field of investigation. As a consequence of the growing demand for environmentally friendly technologies as well as renewable resources the interest on natural flocculants has increased. The aminopolysaccharide chitosan and its modified derivatives have outstanding properties such as biocompability, biodegradability, hydrophilicity, adsorption, flocculating ability and antibacterial properties. These natural polymers derived from the sea-food industry waste products would be very useful as residue oil adsorbents in any oily wastewater and can be among the most promising candidates as a replacement of the synthetic flocculants. / Ölhaltiges Abwasser, das bei Erdöl- und petrolchemischen Raffinierungsprozessen entsteht, ist eine der größten Umweltgefahren. Dieses Altöl landet jedes Jahr in der Kanalisation und in Deponien. Es handelt sich dabei um die 25-fache Menge an Rohöl, die beim Unfall der Exxon Valdez (1989) ausgeflossen ist. Die Öl/Wasser-Trennung überspannt ein breites Spektrum industrieller Prozesse. Es gibt viele Techniken, die abhängig von jeder Situation eingesetzt werden. Das Nebenprodukt bei der Abtrennung von Wasser aus ölhaltigen Abwässern ist ein Schlamm (Ölschlamm), der reich an Öl, Tensiden und Partikeln ist. Der Ölschlamm enthält noch bedeutende Mengen an Wasser, die vor ihrer Entsorgung verwertet werden müssen. Die Verwendung von Polyelektrolyten zur Ausflockung des emulgierten Öls und seine Trennung von der wässrigen Phase ist in der Regel einer der Schritte zur Behandlung von Abwässern sowie ölhaltigen Schlämmen. Die Effizienz von Polyelektrolyten als Flockungsmittel wird ganz häufig über Versuch und Fehler bewertet, und das passende Polymer wird entsprechend dem jeweiligen Fall ausgewählt. Sogar in wissenschaftlichen Untersuchungen ist es eher üblich, industrielle Ölschlamm-Proben zu verwenden. Der industrielle Ölschlamm wird charakterisiert und mit Polyelektrolyten behandelt. Dennoch ist der industrielle Ölschlamm ziemlich kompliziert und variabel und muss durch ein Modell angenähert werden. Für die systematische Untersuchung der Effizienz von Polyelektrolyten als Flockungsmittel ist ein stabiles, realistisches und klar definiertes Ölschlamm-Modell notwendig. In der vorliegenden Arbeit wurde ein Ölschlamm-Modell erfolgreich entwickelt und charakterisiert. Das Modell besteht aus Wasser, Öl (Kerosin), Tensid (Natriumdodecylsulfat, SDS) und Tonteilchen (Blauton). Die Emulgiereffizienz des Tensids und des Tons wurden unabhängig voneinander untersucht. Die Wechselwirkungen zwischen dem Tensid und dem Ton, die sowohl die Adsorption des Ersteren auf dem Letzteren einschließen als auch einen Kationenaustausch, wurden untersucht. Die vier Komponenten des Ölschlamm-Modells wurden schließlich kombiniert und es wurde eine Reihe von Emulsionen hergestellt, bei denen die relativen Mengen der Emulsionsmittel verändert wurden, um eine möglichst hohe Stabilität zu erreichen. Nachdem ein geeignetes Ölschlamm-Modell zur Verfügung stand, wurde die Effizienz der verschiedenen Polyelektrolyte als Flockungsmittel bewertet. Kommerzielle natürliche (Chitosane), synthetische (PolyDADMACs) Polyelektrolyte und Oilbreaks sowie Labor-semi-synthetische Polymere (modifizierte Chitosane) wurden getestet. Die Flockungseffizienz wurde sowohl basierend auf der Menge und Qualität des Wassers, das zurückgewonnen wurde, als auch bezogen auf die Flockenstabilität, die Flockengröße und die Sedimentationsgeschwindigkeit bestimmt. Das zurückgewonnene Wasser wurde entsprechend der Vorschriften der Behörde für Umweltschutz (EPA) charakterisiert. Die Analysen enthielten die Bestimmung des gesamten organischen Kohlenstoffs (TOC), des chemischen Sauerstoffbedarf (CSB), des biochemischen Sauerstoffbedarfs (BSB5), des Gesamtgehalts an suspendierten Partikeln (TSS) und die Bestimmung des pH. Die Auswahl geeigneter Flockungsmittel hängt auch von der Art der gebildeten Flocken, in Kombination mit der Behandlung, die den Flockungsprozess folgt, ab. Wenn als Postflockungsprozess Filtration oder Zentrifugation folgen, sollten Polymere verwendet werden, die große und poröse Flöckchen bilden, wie im Fall der modifizierten Chitosane AG95 und AG97. Andererseits verlangen Geräte zur Klärung von Abwässern dichte Flocken, wie solche, die beim Einsatz von PolyDADMACs, kommerziellen Chitosanen, Oilbreaks und den modifizierten Chitosanen GA35, GA41 und AG79 entstehen. In Bezug auf die Wasserqualität erhält man mit einigen der verwendeten Polymere so niedrige Werte von CSB, TOC und BSB5, dass wie im Falle von P187K (PolyDADMAC) und GA41 (modifiziertes Chitosan) keine biologische Sekundärbehandlung notwendig ist. Im Falle der anderen Polymere ist eine biologische Behandlung nötig, um die vorgeschriebenen Grenzen zu erreichen. Die pH-Werte der modifizierten Chitosane (außer der AG97), der im Labor hergestellten PolyDADMACs und des Oilbreak OCAA sind alle in Bereich der vorgeschriebenen Grenzen. Die Anwendbarkeit von Biopolymeren als Flockungsmittel für die Ölschlammentwässerung ist ein relativ neuer Forschungsbereich. Als Folge der wachsenden Nachfrage nach umweltfreundlichen Technologien sowie erneuerbarer Ressourcen hat das Interesse an natürlichen Flockungsmitteln zugenommen. Das Aminopolysaccharidchitosan und dessen modifizierte Produkte haben hervorragende Eigenschaften wie Biokompatibilität, Biodegradierbarkeit, Hydrophilie, Adsorption, die Fähigkeit zur Flockung und antibakterielle Eigenschaften. Diese natürlichen Polymere, die aus Meeresfrüchte-Industrieabfallprodukten gewonnen werden, sollten als Restöl-Adsorbentien bei der Aufarbeitung jedes ölhaltigen Abwassers sehr nützlich sein und können zu den vielversprechendsten Kandidaten als Ersatz der synthetischen Flockungsmittel werden.
103

Funktionalisierte Polymerkomposite auf Basis von Poly(3,4-ethylendioxythiophen) und Gold

Hain, Jessica 15 April 2008 (has links)
Poly(3,4-ethylenedioxythiophene), PEDOT, belongs to the group of conducting polymers and is characterized by its high stability, a moderate band gap and its optical transparency in the conductive state. A large disadvantage of conducting polymers, and also PEDOT, is their poor solubility. One way to achieve processible materials is the synthesis of colloidal particles. Thus, this work focuses on the development of conductive particles by preparing composite structures. Polymeric colloids like latex particles and microgels were used as templates for the oxidative polymerization of EDOT. Depending on template structure completely different composite morphologies with variable properties were obtained. It was found that modification with PEDOT did not only cause conductive particles for application as humidity sensor materials, but also candidates for further functionalization with gold nanoparticles (Au-NPs). Due to a multi-stage synthesis route it was possible to achieve polystyrene(core)-PEDOT(shell)-particles decored with Au-NPs. Microgels acting as “micro reactors” for the incorporation of PEDOT and Au-NPs were also used for preparing multifunctional composites for catalytic applications. / Poly(3,4-ethylendioxythiophen), PEDOT, gehört zur Gruppe der leitfähigen Polymere und zeichnet sich durch seine hohe Stabilität, eine moderate Bandlücke und seine optische Transparenz im dotierten Zustand aus. Ein Nachteil leitfähiger Polymere, wie auch von PEDOT, ist deren schlechte Löslichkeit. Die Synthese kolloidaler Partikel bietet jedoch eine Möglichkeit dieses Problem zu umgehen. In diesem Zusammenhang richtete sich der Fokus dieser Arbeit auf die Darstellung leitfähiger Partikel in Form von Kompositstrukturen. Polymerkolloide, wie Latex- und Mikrogelpartikel, sind als Template eingesetzt worden, in deren Gegenwart PEDOT durch eine oxidative Polymerisation synthetisiert wurde. In Abhängigkeit von der Struktur des Templats sind unterschiedliche Kompositmorphologien mit steuerbaren Eigenschaften erhalten worden. Auf diese Weise wurden neben Materialien für die Feuchtigkeitssensorik leitfähige Kompositpartikel hergestellt, die zusätzlich mit Gold-Nanopartikeln (Au-NP) funktionalisiert werden konnten. Durch ein mehrstufiges Syntheseverfahren sind somit Polystyrol(Kern)-PEDOT(Schale)-Partikel mit Au-NP-funktionalisierter Oberfläche synthetisiert worden. Mikrogelpartikel, die als „Mikroreaktoren“ für die Inkorporation von PEDOT- und Au-NP dienten, wurden ebenfalls eingesetzt, um multifunktionale Komposite mit katalytischen Eigenschaften herzustellen.
104

Determinanten und Mechanismen der foamyviralen Partikelfreisetzung

Stange, Annett 18 April 2008 (has links)
Die Spumaretrovirinae, mit ihrer einzigen Gattung der Foamyviren (FV), nehmen aufgrund einer recht ungewöhnlichen Replikationsstrategie und Ähnlichkeiten mit den Hepadnaviren eine Sonderstellung innerhalb der Familie der Retroviren ein. Eine Besonderheit der FV ist, daß sie für die Partikelfreisetzung, im Gegensatz zu den Orthoretroviren, die beiden strukturellen Proteine Gag und Env benötigen. Das Gag- Protein trägt alle für den Kapsidzusammenbau nötigen strukturellen Komponenten, kann jedoch durch eine fehlende Membranbindungsdomäne nicht mit Zellmembranen assoziieren. Der Membrantransport der bereits im Zytoplasma zusammen gebauten FV Kapside wird vermutlich durch das FV Env-Protein vermittelt. Das FV Hüllprotein ist jedoch auch alleine zur Freisetzung von Kapsidlosen, Hüllprotein-haltigen subviralen Partikeln (SVP) fähig. Da eine Envunabhängige Freisetzung virus-ähnlicher Partikel durch ein FV Gag-Protein mit künstlichem Membrananker möglich ist, scheint das FV Gag-Protein auch essentielle strukturelle Elemente für die Partikelfreisetzung zu enthalten. In den letzten Jahren wurden große Fortschritte in der Erforschung der Freisetzung von membranumhüllten Viren und den daran beteiligten viralen Determinanten und zellulären Mechanismen gemacht. Wobei den meist in den viralen Kapsidproteinen vorkommenden Late (L)-Domänen und deren Interaktion mit dem zellulären Proteinsortierungsweg in Multivesikuläre Körperchen (MVB) eine besondere Bedeutung zu kommt. Über die FV virale und subvirale Partikelfreisetzung und die dabei involvierten strukturellen viralen Domänen und zellulären Proteinen war jedoch bisher wenig bekannt. Im Rahmen dieser Arbeit konnte durch Mutationsanalysen von drei potentiellen L-Domän Sequenzmotiven im Prototyp FV (PFV) Gag-Protein ein, innerhalb der Primaten FV konserviertes, PSAP Konsensusmotiv als funktionelle L-Domäne charakterisiert werden. Dessen Mutation führte zu klassischen L-Domän Defekten mit verringerter Partikelfreisetzung, sowie einer elektronenmikroskopisch sichtbaren Arretierung der Virusknospung und seine Funktion war durch homo- und heterologe L-Domän Motive anderer Retroviren teilweise oder vollständig ersetzbar. Ein PPPI Motiv in PFV Gag, mit Ähnlichkeit zur L-Domän PPXY Konsensussequenz, schien jedoch keinen Einfluß auf die FV Freisetzung zu besitzen. Die Charakterisierung eines in allen FV Gag-Proteinen konservierten YXXL Motivs ließ eher auf eine wichtige Rolle beim korrekten Kapsidzusammenbau, als auf eine klassische LDomän Funktion schließen. Eine korrekte Kapsidmorphogenese schien entscheidend für die reverse Transkription des Virusgenoms zu sein. Durch Koexpression verschiedener dominant-negativer Mutanten des zellulären ESCRT-Proteinssortierungsweges konnte gezeigt werden, daß die virale Partikelfreisetzung von PFV augenscheinlich dem generellen Model der Freisetzung vieler membranumhüllter Viren über das VPS-System folgt. Eine spezifische Interaktion des PFV Gag PSAP L-Domän Motivs mit TSG101, einer frühen Komponente der ESCRT-Komplexe, verbindet PFV mit dem VPS-Sortierungsweg der Zelle. Die besondere Fähigkeit des FV Env-Proteins zur Freisetzung von SVPs wurde bereits vor einiger Zeit entdeckt, dennoch war bisher nichts über die viralen und zellulären Determinanten bekannt, die zu einer Knospung des Env-Proteins in Vesikel führten. Durch eine Reihe von Deletions- und Mutationsanalysen des PFV Env-Proteins konnten in dieser Arbeit zwei für die SVP-Freisetzung inhibitorische Abschnitte am N- und C-Terminus der zytoplasmatischen Domänen des Env- Proteins ermittelt werden. Weiterhin wurden essentielle Sequenzen im Leaderpeptid, sowie die Notwendigkeit der Membranspannenden Domäne der Transmembran- Untereinheit für die SVP-Freisetzung festgestellt. Obwohl das PFV Env-Protein kein bekanntes L-Domän Sequenzmotiv enthält, konnte ein Einfluß später Komponenten der ESCRT-Maschinerie auf die SVP-Bildung beobachtet werden. Wobei die genaue Eintrittsstelle in den VPS-Weg im Rahmen dieser Arbeit nicht definiert werden konnte. Die vorgenommen Analysen lassen vermuten, daß die Bildung von SVPs durch die Konzentration der Env-Proteine in der Zellmembranen reguliert wird. Welche genauen Mechanismen dabei zu Grunde liegen und wieweit die zelluläre Ubiquitinylierungsmaschinerie involviert ist, bedarf jedoch weiterer Erforschung. Die Ergebnisse dieser Arbeit verdeutlichen erneut die Sonderstellung der FV innerhalb der Familie der Retroviren. Auf der einen Seite folgt die foamyvirale Viruspartikelfreisetzung den typischen Mechanismen der retroviralen Virusknospung. Andererseits zeigt die Freisetzung von subviralen Partikeln, die bei keinem anderen Retrovirus bisher beobachtet wurde, eine weitere Parallele zur Replikationsstrategie der Hepadnaviren auf.
105

Particle Simulation using Asynchronous Compute : A Study of The Hardware

Enarsson, Kim January 2020 (has links)
Background. With the introduction of the compute shader, followed by the application programming interface (API) DirectX 12, the modern GPU is now going through a transformation. Previously the GPU was used as a massive computational tool for running a single task at unparalleled speed. The compute shader made it possible to run CPU like programs on the GPU, DirectX 12 takes this even further by introducing a multi-engine architecture. Multi-engine architecture unlocks the possibility of running the compute shader alongside the regular graphical stages, this concept is called asynchronous compute. Objectives. This thesis aims to investigate if asynchronous compute can be used to increase the performance of particle simulations. The key metrics being studied are total frame time, rendered frames per second, and overlap time. The frst two are used to determine if asynchronous compute improves performance or not, while the last is used to determine if the particle simulation is running asynchronous compute or not.Methods. For this thesis, the particle simulation used is the N-body particle simulation.The N-body particle simulation is implemented using a compute shader and is part of a larger DirectX 12 framework. One application is implemented that run two different execution models, one is the standard sequential execution model and one is the asynchronous compute model. The main difference between the two execution models is that the sequential execution model will be using only one command queue, this being a 3D command queue. The asynchronous compute model will be running a separate compute command queue alongside the 3D command queue. The performance metrics being studied are all collected using a custom-built GPU profiler. Results. The results indicate that it is possible to increase the performance of particle simulations using asynchronous compute. The registered performance gain reaches as high as 34% on hardware that supports asynchronous compute while hardware that according to NVIDIA does not support asynchronous compute registered performance gains up towards 11%. In terms of overlap time between the compute workload and the graphical workload, the AMD GPU showed an overlap time that matched the frame time. However, NVIDIA GPUs did not show the expected overlap time. Conclusions. It can be determined that asynchronous compute provide benefits when compared to the sequential execution model, it can be used to increase the performance of particle simulations. However, since the research in this thesis only made use of a single particle simulation, more work needs to be done, for example, work to test if the performance gain can be improved even further using different methods like, workload pairing or utilizing multiple GPUs, however that kind of work requires the use of a larger-scale application that consists of multiple different tasks other than just a single particle simulation. / Bakgrund. I och med Introduktionen av compute shadern, tätt följd av DirectX12, så genomgår den moderna GPUn en förvandling. Tidigare användes GPUn som ett massivt uträkningsverktyg ämnat att utföra en enda uppgift med en enastående hastighet. Compute shadern gjorde det möjligt at köra CPU liknande program på GPUn, DirectX 12 tar detta ett steg längre genom att introducera en multi-engine arkitektur. Denna arkitektur låser upp möjligheten att köra compute shadern samtidigt som de vanliga grafiska shader stadigerna, detta konceptet kallas asynchronous compute.Syfte. Syftet med denna avhandling är att undersöka om asynchronous compute kan användas för att öka prestandan på en partikel simulering. Den viktigaste data som kommer studeras är den totala frame tiden, antalet renderade frames varje sekund och överlapp tiden. Den totala frame tiden och antalet renderade frames varje sekund används för att bestämma om asynchronous compute faktiskt ökar prestandan eller inte, medan överlapp tiden används för att bestämma om partikel simuleringen kör asynchronous compute eller inte.Metod. Partikel simuleringen som används i denna avhandling är en N-body partikel simulering. N-body partikel simuleringen är implementerad i en compute shader och är en del av en större DirectX 12 applikation. En applikation implementeras som kör två olika exekverings modeller, den ena är den vanliga sekventiella exekverings modellen och den andra är asynchronous compute modellen. Den primära skillnaden mellan exekverings modellerna är att den sekventiella exekverings modellen bara använder sig av en kommando kö, vilken är en 3D kommando kö. Asynchronous compute modellen kommer använda sig av en separat compute kommando kö tillsammans med 3D kommando kön. Den metriska datan samlas in med hjälp av enegen byggd GPU profilerare.Resultat. Resultatet indikerar att det är möjligt att öka prestandan hos en partikelsimulering som använder sig av asynchronous compute. Den registrerade prestandaökningen når så högt som till 34% på hårdvara som stödjer asynchronous compute, medan hårdvara som inte stödjer asynchronous compute registrerade en prestandaökning upp till 11%. När det kommer till överlapp tiden mellan compute delen och den grafiska delen så visar GPUn från AMD en överlapp tid som matchar frame tiden. När det kommer till GPUerna från NVIDIA så visade dessa inte en förväntad överlapp tid.Slutsatser. Det kan fastställas att asynchronous compute har vissa fördelar jämfört med den sekventiella exekverings modellen. Asynchronous compute kan användas för att öka prestanda hos partikel simuleringar, men eftersom undersökningen i denna avhandling bara använder en enda partikel simulering så krävs ännu mera forskning. Exempelvis forskning som undersöker om prestanda ökningen kan bli ännu bättre, genom att applicera olika metoder som workload pairing och användingen av fera GPUer, detta krväver också att en större application för testing används, som består av fera olika typer av simuleringar och inte bara en enda partikel simuleing.
106

Parametrization of relative humidity- and wavelength-dependent optical properties of mixed Saharan dust and marine aerosol

Schladitz, Alexander 01 July 2011 (has links)
Aerosol particles interact with sunlight through scattering and absorption and have therefore a direct radiative effect. Hygroscopic aerosol particles take up water and are able to grow in size below 100% relative humidity, which involves the change of optical properties and the direct radiative effect. The change of aerosol optical properties for aerosol mixtures under humidification is presently not well understood, especially for the largest particle sources worldwide. The present PhD-thesis quantifies wavelength- and humidity-dependent aerosol optical properties for a mixture of Saharan mineral dust and marine aerosol. For quantification, an aerosol model was developed, which based on in-situ measurements of microphysical and optical properties at Cape Verde. With this model, aerosol optical properties were calculated from the dry state up to 90% relative humidity. To validate the model, a measure of the total extenuated light from particles under ambient conditions was used. Finally, the humidity dependence of aerosol optical properties for marine aerosol, Saharan dust aerosol, and a mixture of both species was described by two empirical equations. With the wavelength of the incident visible solar radiation, relative humidity, and dry dust volume fraction, the humidity dependence of optical properties can be calculated from tabulated values. To calculate radiative effects, aerosol optical properties were used as input parameters for global circulation models including radiative transfer. Due to the complexity of aerosol related processes, they have been treated implicitly, meaning in parameterized form. For modelling purposes, the present PhD-thesis provides a solution to include humidity effects of aerosol optical properties. / Aerosolpartikel wechselwirken durch Streu- und Absorptionsprozesse mit der einfallenden Sonnenstrahlung und haben somit einen direkten Strahlungseffekt. Bei relativen Feuchten bis 100% können Aerosolpartikel aufquellen und somit ihre Größe ändern. Im Zuge des Aufquellens, ändern sich die optischen Eigenschaften und somit auch der direkte Strahlungseffekt der Aerosolpartikel. Speziell für Mischungen von verschiedenen Aerosolspezies ist die Änderung der optischen Eigenschaften des Aerosols durch Feuchte Einfuss noch nicht ausreichend verstanden. Gegenstand der vorliegenden Arbeit ist daher die Quantifizierung der wellenlängen- und feuchteabhängigen optischen Eigenschaften einer Mischung von Saharastaub- und marinen Aerosol. Die zur Quantifizierung notwendigen Daten wurden im Rahmen einer Feldmessung von mikrophysikalischen- und optischen Aerosol-Eigenschaften auf den Kapverdischen Inseln gesammelt. Auf Grundlage dieser Messungen wurde ein Aerosol-Modell entwickelt. Dieses Modell wurde daraufhin verwendet, um Berechnungen von optischen Aerosol-Eigenschaften bei relativen Feuchten bis 90% durchzuführen. Eine Messung der Lichtschwächung durch Aerosolpartikel unter Umgebungsbedingungen wurde verwandt, um das Modell bei Umgebungsfeuchten zu validieren. Die Wellenlängen- und Feuchteabhängigkeit der optischen Eigenschaften des Aerosols wurde parametrisiert und konnte anhand von zwei Parametergleichungen bestimmt werden. Unter Benutzung von tabellierten Werten und der Wellenlänge des einfallenden sichtbaren Sonnenlichtes, der relativen Feuchte, sowie der Staubvolumenfraktion, kann die Feuchteabhängigkeit von wichtigen Aerosol-optischen Eigenschaften für Saharastaub, marinen Aerosol und einer Mischung aus beiden Komponenten bestimmt werden. Globale Zirkulationsmodelle, die auch eine Berechnung von Strahlungseffekten durch Aerosolpartikel beinhalten, nutzen Aerosol-optische Eigenschaften als Eingabeparameter. Durch zunehmende Komplexitiät zur Beschreibung von Wechselwirkungen in der Atmosphäre, sind einfache Parametrisierungen unabdingbar. Die vorliegende Arbeit liefert daher einen wichtigen Beitrag für die Modellierung von Strahlungseffekten durch Aerosolpartikel und somit zum Verständnis des Strahlungshaushaltes der Erde.
107

The role of turbulence on the bubble-particle collision – An experimental study with particle tracking methods

Sommer, Anna-Elisabeth 29 July 2022 (has links)
Die Analyse von Kollisionen zwischen Partikeln und Blasen in einer turbulenten Strömung ist ein grundlegendes Problem von hoher technologischer Relevanz, z. B. für die Abtrennung wertvoller Mineralpartikel durch Schaumflotation. Dieser Relevanz steht ein Defizit an experimentellen Daten und Erkenntnissen über den Kollisionsprozess gegenüber. Ein Hauptproblem ist die geringe Anzahl der verfügbaren Messtechniken zur direkten Beobachtung der Kollisionen zwischen Partikeln und Blasen. Daher besteht das Ziel dieser Dissertation darin, neue Methoden zu entwickeln, um die Wechselwirkung zwischen Blasen und Partikeln unter definierten hydrodynamischen Bedingungen zu messen. Diese Methoden beruhen auf der Verfolgung von einzelnen Partikeln mit 4D Particle Tracking Velocimetry (PTV) und Positron Emission Particle Tracking (PEPT), um die Lagrangeschen Partikeltrajektorien in der Nähe einer Blase zu bestimmen und die kollidierenden Partikel zu klassifizieren. In zwei Versuchsaufbauten werden diese Messmethoden angewandt, um die Wechselwirkung zwischen Blasen und Partikeln in turbulenten Strömungen zu untersuchen. In einer Blasensäule wird die Turbulenz im Nachlauf einer frei aufsteigenden Blasenkette erzeugt, während in einem Wasserkanal die Turbulenz durch die Umströmung eines Gitters produziert wird. In beiden Fällen wird das vorhandene turbulente Strömungsfeld um die Blasen mittels Tomographic Particle Image Velocimetry (TPIV) charakterisiert. Zunächst wird der Einfluss des Blasennachlaufs auf die Blasen-Partikel-Kollision für beide Versuchsaufbauten mit dem 4D-PTV-Verfahren analysiert. Es wird gezeigt, dass in beiden Versuchsanordnungen die Kollision von feinen Partikeln nicht nur an der Vorderseite, sondern auch an der Hinterseite der Blase stattfindet. Diese Ergebnisse werden mit der gemessenen turbulenten kinetischen Energie und der Dissipationsrate um die Blase korreliert. Anschließend werden die experimentell ermittelte turbulente kinetische Energie und Dissipationsrate genutzt, um die Kollisionsfrequenz vorherzusagen. Dafür werden bestehende Modelle angewendet und deren Vorhersagen den experimentellen Ergebnissen gegenübergestellt. Weiterhin wird der Wasserkanal genutzt, um den Einfluss der turbulenten Flüssigkeitsströmung auf die Kollision zwischen einer stagnierenden Blase und den Modellpartikeln zu verdeutlichen. Neben der Untersuchung in einer verdünnten Feststoffsuspension wird auch die Blasen-Partikel-Wechselwirkung in einer dichten Strömung mit dem PEPT-Verfahren untersucht. Das PEPT-Verfahren hat das Potenzial, Suspensionen mit einem hohen Feststoffanteil zu messen, was mit optischen Trackingverfahren, wie 4D-PTV, nicht möglich ist. Für den Nachweis einzelner Partikel mit dem PEPT-Verfahren wurden radioaktive Tracerpartikel entwickelt, welche repräsentativ für die Modellpartikeln sind. Die Trajektorien der markierten Partikel werden verwendet, um die durchschnittliche Partikelverteilung im turbulenten Feld zu bestimmen und die Blasen-Partikel-Wechselwirkung zu beschreiben. Insgesamt bieten die entwickelten Methoden eine Möglichkeit die Kollision zwischen Partikeln und Blasen in einer turbulenten Strömung direkt zu untersuchen. Die gewonnenen experimentellen Daten ermöglichen es, bestehende Kollisionsmodelle zu überprüfen und das Verständnis über die Rolle von Turbulenzen in der Schaumflotation zu verbessern. / The analysis of collisions between particles and bubbles in a turbulent flow is a fundamental problem of high technological relevance, e.g. for the separation of valuable mineral particles by froth flotation. That relevance contrasts with an apparent lack of experimental data and insights into this collision process. A major issue is the limitation of available measurement techniques to directly observe the collisions between particles and bubbles. In this dissertation, novel methodologies are developed to measure the interaction between bubbles and particles under defined hydrodynamic conditions. These methodologies comprise particle tracking techniques such as 4D PTV and PEPT to triangulate the Lagrangian particle trajectories in the vicinity of a bubble and classify those which are colliding. In two experimental setups, these techniques are applied to investigate the bubble-particle interaction in turbulent flows. In a bubble column, turbulence is generated in the wake of a freely rising bubble chain, whereas in a water channel, a fluid passing through grid produces a turbulent flow upstream of a stagnant bubble. Accordingly, the turbulent flow field around these bubbles is characterized by TPIV. Firstly, the influence of the bubble wake on the bubble-particle collision is analyzed for both experimental setups with 4D PTV. It is shown that the collision of fluorescent fine particles take place not only at the leading edge but also at the trailing edge of the bubble, independently of the experimental setup. These findings are correlated with the measured TKE and dissipation rates around the bubble and in the bubble wake. Subsequently, the experimental TKE and dissipation rates are applied to existing models for collision frequency, and their predictions are discussed. Secondly, the impact of the turbulent liquid flow on the collision between a stagnant bubble and model particles is studied for a range of turbulent length scales. Besides the investigation in a dilute solid suspension, the bubble-particle interaction is also examined in a dense flow with PEPT. PEPT has the potential to measure suspensions with a high solid fraction, which could not be achieved with optical particle tracking methods. For the detection of individual particles with PEPT, radioactive tracer particles were designed to represent the bulk particles. The trajectories of the labeled particles are used to determine the average particle distribution in the turbulent field and describe the bubble-particle interactions. Overall, the developed methodologies in this dissertation provide a framework to investigate directly the collision between particles and bubble in a turbulent flow. The gained experimental validation data allows to verify existing collision models and to advance our understanding of the role of turbulence in froth flotation.
108

Heat and mass transfer to particles in pulsating flows

Heidinger, Stefan 24 January 2024 (has links)
The behaviour of particles in pulsating and oscillating flows is of practical interest in devices such as pulsation reactors and ultrasonic elevators. In addition to the resulting flow patterns, the influence of the flow on heat and mass transfer is often important. The state of the art in this area is already quite well developed with many different models, theories, and experiments published. However, only small parameter ranges of the behaviour of particles in pulsating and oscillating flows are considered, while an overarching theoretical framework does not yet exist. Therefore, this work presents a three-stage model for the behaviour of solid single particles in oscillating (pulsating) flows. The relative velocity between particle and fluid as well as the flow patterns around the particle, together with the heat and mass transfer at the particle are considered. The model levels build on top of each other, with the introduced ϵ-Re plain as a common connection between the levels. The number of input parameters could be limited to the five most important ones (fluid velocity amplitude, fluid oscillation frequency, fluid temperature, particle diameter, particle density), but these are considered in very large ranges. The relative velocity is largely calculated analytically using various flow resistance approaches. Direct numerical simulations were carried out to qualitatively estimate the flow patterns around the particle. The quantitative determination of a meta correlation for the entire ϵ-Re plane was carried out using 33 data sets from the literature. Conditions in pulsation reactors are particularly emphasized and their influence investigated.:Chapter 1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Chapter 2. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Chapter 3. State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.1. Material Treatment in the Pulsation Reactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.2. Particle Motion in an Oscillating Fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.3. Steady Streaming (Flow Pattern). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.4. Heat and Mass Transfer in Oscillating Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.5. Heat and Mass Transfer in Pulsating Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.6. Non-continuum Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Chapter 4. Basic Assumptions and Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.1. Input Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.2. Pulsating Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.3. Forces on the Particle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.4. Motion of Particles - Stokes Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.5. Harmonic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.6. Dimensionless Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.7. The ϵ-Re Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Chapter 5. Motion of the Particle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.1. Drag Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.2. Slip Velocity Amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.3. Particle Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.4. Navigation in the ϵ-Re Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.5. Extension of the Stokes Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.6. Additional Effects at Micro Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.7. Analytical Particle Motion - Summary and Conclusion . . . . . . . . . . . . . . . . . . . . 61 Chapter 6. Flow Patterns in the Vicinity of the Particle . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.1. Creeping Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.2. Quasi-steady Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 6.3. Steady Streaming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Chapter 7. Heat and Mass Transfer to Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 7.1. Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 7.2. The Quasi-Steady HMT Area of the Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 7.3. Models for Oscillating Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 7.4. Meta Correlation Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 7.5. Deviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 7.6. Quasi-Steady Assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 7.7. Heat and Mass Transfer to Small Particles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 7.8. Conclusion of Heat and Mass Transfer to Particles . . . . . . . . . . . . . . . . . . . . . . . . . 83 Chapter 8. Summary & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 8.1. Model Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 8.2. Inŕuence of input parameters on the HMT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 8.3. The ϵ-Re Plane in the Special Case of the Pulsation Reactor . . . . . . . . . . . . . . 91 8.4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Chapter 9. Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Appendix A. Derivation and Solution of Particle Motion in the Stokes Model . . . . . i Appendix B. Derivation and Solution of Particle Motion in the Landau & Lifshitz Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii Appendix C. Derivation of Deviation between Stokes and Schiller & Naumann . . . . x Appendix D. Parameters and Algorithm of the Direct Numerical Simulation and Flow Pattern Visualisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii Appendix E. Conducted Data Preparation for HMT Models . . . . . . . . . . . . . . . . . . . . . . xv / Das Verhalten von Partikeln in pulsierenden und oszillierenden Strömungen findet praktisches Interesse in Apparaten wie Pulsationsreaktoren und Ultraschalllevitatoren. Dabei ist neben den entstehenden Strömungsmustern oft der Einfluss der Strömung auf den Wärme- und Stoffübergang von Bedeutung. Der Stand der Technik in der Literatur in diesem Bereich ist bereits recht weit entwickelt mit vielen verschiedenen Modellen, Theorien und Experimenten. Dabei werden jedoch stets nur kleine Parameterbereiche des Verhaltens von Partikeln in pulsierenden und oszillierenden Strömungen betrachtet, während ein übergreifender theoretischer Rahmen noch nicht existiert. Deshalb wird in dieser Arbeit ein dreistufiges Modell vorgestellt für das Verhalten von festen Einzelpartikeln in oszillierenden (pulsierenden) Fluidströmungen. Sowohl die Relativgeschwindigkeit zwischen Partikel und Fluid als auch die Strömungsmuster um das Partikel und der Wärme- und Stoffübergang am Partikel werden hierbei betrachtet. Die Modellebenen bauen aufeinander auf, wobei die eingeführte ϵ-Re-Ebene die Modellebenen miteinander verbinden. Die Anzahl der Eingangsparameter konnte auf die wichtigsten fünf (Fluidgeschwindigkeitsamplitude, Fluidoszillationsfrequenz, Fluidtemperatur, Partikeldurchmesser, Partikeldichte) begrenzt werden, diese werden jedoch in sehr großen Bereichen betrachtet. Die Relativgeschwindigkeit wird mittels verschiedener Strömungswiderstandsansätze größtenteils analytisch berechnet. Zur qualitativen Abschätzung der Strömungsmuster um das Partikel wurden direkte numerische Simulationen durchgeführt. Die quantitative Bestimmung einer Metakorrelation für die gesamte ϵ-Re-Ebene wurde mittels 33 Datensätze aus der Literatur durchgeführt. Dabei werden Bedingungen in Pulsationsreaktoren besonders herausgestellt und deren Einfluss untersucht.:Chapter 1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Chapter 2. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Chapter 3. State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.1. Material Treatment in the Pulsation Reactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.2. Particle Motion in an Oscillating Fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.3. Steady Streaming (Flow Pattern). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.4. Heat and Mass Transfer in Oscillating Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.5. Heat and Mass Transfer in Pulsating Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.6. Non-continuum Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Chapter 4. Basic Assumptions and Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.1. Input Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.2. Pulsating Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.3. Forces on the Particle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.4. Motion of Particles - Stokes Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.5. Harmonic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.6. Dimensionless Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.7. The ϵ-Re Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Chapter 5. Motion of the Particle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.1. Drag Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.2. Slip Velocity Amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.3. Particle Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.4. Navigation in the ϵ-Re Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 5.5. Extension of the Stokes Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.6. Additional Effects at Micro Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.7. Analytical Particle Motion - Summary and Conclusion . . . . . . . . . . . . . . . . . . . . 61 Chapter 6. Flow Patterns in the Vicinity of the Particle . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.1. Creeping Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.2. Quasi-steady Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 6.3. Steady Streaming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Chapter 7. Heat and Mass Transfer to Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 7.1. Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 7.2. The Quasi-Steady HMT Area of the Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 7.3. Models for Oscillating Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 7.4. Meta Correlation Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 7.5. Deviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 7.6. Quasi-Steady Assumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 7.7. Heat and Mass Transfer to Small Particles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 7.8. Conclusion of Heat and Mass Transfer to Particles . . . . . . . . . . . . . . . . . . . . . . . . . 83 Chapter 8. Summary & Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 8.1. Model Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 8.2. Inŕuence of input parameters on the HMT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 8.3. The ϵ-Re Plane in the Special Case of the Pulsation Reactor . . . . . . . . . . . . . . 91 8.4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Chapter 9. Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 Appendix A. Derivation and Solution of Particle Motion in the Stokes Model . . . . . i Appendix B. Derivation and Solution of Particle Motion in the Landau & Lifshitz Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii Appendix C. Derivation of Deviation between Stokes and Schiller & Naumann . . . . x Appendix D. Parameters and Algorithm of the Direct Numerical Simulation and Flow Pattern Visualisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii Appendix E. Conducted Data Preparation for HMT Models . . . . . . . . . . . . . . . . . . . . . . xv
109

Fluid- und Feststofftransport in Rohrsystemen und Pumpstationen

Ismael, Bashar 25 May 2021 (has links)
Die vorliegende Arbeit beschäftigt sich mit der Thematik des hydraulischen Feststofftransports in Druckrohrleitungen zur Bestimmung der hydraulischen Energieverluste des Wasser-Feststoff-Gemisches und der wirtschaftlichen Gemischgeschwindigkeit (der s.g. kritischen Geschwindigkeit) vcrit. Zu diesem Zweck wurde der Transportvorgang in verschiedenen Rohrkonfigurationen (horizontal, schräg und z. T. vertikal) an einem physikalischen Modell im Hubert-Engels-Labor des Instituts für Wasserbau und Technische Hydromechanik der Technischen Universität Dresden untersucht. Dabei kamen drei Sandfraktionen zum Einsatz (0,1 - 0,5 mm; 0,71 - 1,25 mm und 1,4 - 2,2 mm). Die Partikel weisen eine Dichte von ρF=2650 kg/m³ auf. Ziel der Untersuchungen war, mithilfe der Messdaten eine Formel zur Berechnung des Verlustanteils der dispersen Phase an dem gesamten Energieverlust besonders für das heterogene und das quasi-homogene Transportregime in Abhängigkeit von den Einflussgrößen (Dichte, Konzentration, Partikeldurchmesser etc.) abzuleiten. Ein weiterer Schwerpunkt der Arbeit war, die kritische Gemischgeschwindigkeit genauer zu betrachten und einen entsprechenden Rechenansatz aufzustellen. Diese Geschwindigkeit stellt den Übergang von dem Transport mit beweglicher Sohle zum heterogenen Feststofftransport dar. Nach Abschluss der physikalischen Versuche wurde der Feststofftransport mit der Software ANSYS-Fluent numerisch untersucht. Im Fokus der Modellierung stand die Festsetzung der Wandrandbedingung für die disperse Phase, mit Hilfen derer die physikalisch gemessenen Energieverluste erreicht werden konnten. Die Simulationen wurden mit dem Euler-Granular-Modell durchgeführt. Hierbei wird der Feststoff als zweites Kontinuum betrachtet und seine rheologischen Eigenschaften wurden durch die Erweiterung der kinetischen Theorie der Gase auf die disperse Phase (eng. kinetic theory of granular flow KTGF) berechnet. Das angewendete zwei-Fluid-Modell (TFM) eignet sich sehr gut für alle möglichen vorkommenden Feststoffkonzentrationen und liefert gute Übereinstimmung mit den Messergebnissen im Gegensatz zu dem Euler-Lagrange-Modell (DPM), welches lediglich bei niedrigen Feststoffkonzentrationen Anwendung findet.:Inhaltsverzeichnis Abbildungsverzeichnis Tabellenverzeichnis Symbolverzeichnis Indexverzeichnis 1 Einleitung und Zielsetzung 2 Grundlagen des hydraulischen Feststofftransports in Rohrleitungen 2.1 Das Energiegesetz 2.2 Feststofftransport in Rohrleitungen 2.3 Partikeleigenschaften 2.4 Typisierung der Partikelbewegung mit der Strömung 2.5 Einfluss der Turbulenz auf die Partikelbewegung in horizontaler Rohrleitung 2.6 Transportzustände in horizontaler Rohrleitung 2.7 Transportzustände in vertikaler Rohrleitung 2.8 Stopfgrenze 2.9 Kräftebilanz an einem Feststoffpartikel 2.10 Dimensionsanalyse 2.10.1 Auflistung der Einflussgrößen 2.10.2 Anzahl der dimensionslosen π-Parameter 2.10.3 Auswahl der Hauptvariablen 2.10.4 Ermittlung der π-Parameter 2.10.5 Form des funktionellen Zusammenhangs 3 Bemessungsansätze des hydraulischen Transports 3.1 Stand des Wissens 3.1.1 Feststofftransport in horizontaler Rohrleitung 3.1.2 Feststofftransport in geneigter Rohrleitung 3.1.3 Feststofftransport in vertikaler Rohrleitung 3.1.4 Die kritische Gemischgeschwindigkeit in horizontaler Rohrleitung 3.1.5 Die kritische Gemischgeschwindigkeit in geneigter Rohrleitung 3.1.6 Weitere Rechenmodelle 3.2 Erweiterung des Energiegesetzes auf Gemischströmung 3.2.1 In horizontaler Rohrleitung 3.2.2 In geneigter Rohrleitung 3.2.3 In vertikaler Rohrleitung 4 Experimentelle Untersuchungen 4.1 Aufbau der ersten Versuchsanlage 4.2 Messtechnik 4.3 Umbau der Versuchsanlage 4.4 Untersuchungsmaterial 4.5 Experimentelles Verfahren 5 Numerische Simulationen mit ANSYS-Fluent 5.1 Grundlagen der Mehrphasenströmungen 5.2 Auswahl des numerischen Modells 5.3 Das Granular-Euler-Modell 5.3.1 Die Erhaltungsgleichung 5.3.2 Die kinetische Theorie der dispersen Phase 5.4 Modellvalidierung 6 Vorstellung der Untersuchungsergebnisse 6.1 Ergebnisse der experimentellen Untersuchungen in horizontaler Leitung 6.1.1 Experimentelle Untersuchungen zum Energieverlust 6.1.2 Experimentelle Untersuchung zu der kritischen Geschwindigkeit 6.2 Ergebnisse der hydronumerischen Untersuchungen in horizontaler Rohrleitung 6.2.1 Randbedingungen 6.2.2 Numerische Lösung und Konvergenz 6.2.3 Parameteranalyse anhand eigener Versuche 6.2.4 Numerische Untersuchungen zur Wechselwirkung zwischen den hydraulischen Kenngrößen 6.3 Ergebnisse der experimentellen Untersuchungen in vertikaler Leitung 6.4 Ergebnisse der experimentellen Untersuchungen in geneigter Rohrleitung 6.4.1 Experimentelle Untersuchungen zum Energieverlust 6.4.2 Experimentelle Untersuchung zu der kritischen Gemischgeschwindigkeit 6.5 Ergebnisse der numerischen Untersuchungen in geneigter Rohrleitung 7 Fehleranalyse und weitere Betrachtungen 7.1 Degradierung des Feststoffes 7.2 Die Abnutzung der Pumpe 7.3 Abrieb und Durchbruch der Rohrleitungen 7.4 Die Instabilität des Systems bei geringen Geschwindigkeiten 7.5 Messabweichung des Durchflussmessers 7.6 Fehlerquelle bei der Untersuchung der kritischen Gemischgeschwindigkeit 7.7 Fortbewegung der Feststoffe bei Geschwindigkeiten unterhalb vcrit 7.8 Einfluss der Transportkonzentration auf den Arbeitspunkt der Pumpe 8 Zusammenfassung Literaturverzeichnis Anhang / The present work deals with the hydraulic transport characteristics of sand-water mixtures in pipelines to determine hydraulic gradients and the deposition-limit velocity (critical velocity). For this purpose, the transport process in various pipe configurations (horizontal, inclined and vertical) was investigated on a physical model at the Hubert Engels Laboratory of the Institute of Hydraulic Engineering and Technical Hydromechanics of the Technical University of Dresden. Three sand fractions were used (0.1 - 0.5 mm, 0.71 - 1.25 mm and 1.4 - 2.2 mm) with particles density of ρF = 2650 kg/m³. The aim of the investigations was to develop a model for calculating the head loss percent-age of the disperse phase in terms of total energy loss, especially for the heterogeneous and quasi-homogeneous transport regime correlating to the influence quantities (density, concentration, particle diameter, etc.). Another important aspect for this work was to consider the critical velocity and to set up a corresponding calculation approach for this parameter. The deposition-limit velocity represents the transition from sliding Bed transport to heterogeneous transport. In the next step, the solids transport process was investigated numerical with ANSYS-Fluent. The focus of the modeling was the determination of the wall boundary condition for the disperse phase, with help of which the physically measured energy losses could be re-stored. The simulations were performed with the Euler Granular model. Here, the solid is considered to be the second continuum, and its rheological properties were calculated by expanding the kinetic theory of gases to disperse phase (KTGF).:Inhaltsverzeichnis Abbildungsverzeichnis Tabellenverzeichnis Symbolverzeichnis Indexverzeichnis 1 Einleitung und Zielsetzung 2 Grundlagen des hydraulischen Feststofftransports in Rohrleitungen 2.1 Das Energiegesetz 2.2 Feststofftransport in Rohrleitungen 2.3 Partikeleigenschaften 2.4 Typisierung der Partikelbewegung mit der Strömung 2.5 Einfluss der Turbulenz auf die Partikelbewegung in horizontaler Rohrleitung 2.6 Transportzustände in horizontaler Rohrleitung 2.7 Transportzustände in vertikaler Rohrleitung 2.8 Stopfgrenze 2.9 Kräftebilanz an einem Feststoffpartikel 2.10 Dimensionsanalyse 2.10.1 Auflistung der Einflussgrößen 2.10.2 Anzahl der dimensionslosen π-Parameter 2.10.3 Auswahl der Hauptvariablen 2.10.4 Ermittlung der π-Parameter 2.10.5 Form des funktionellen Zusammenhangs 3 Bemessungsansätze des hydraulischen Transports 3.1 Stand des Wissens 3.1.1 Feststofftransport in horizontaler Rohrleitung 3.1.2 Feststofftransport in geneigter Rohrleitung 3.1.3 Feststofftransport in vertikaler Rohrleitung 3.1.4 Die kritische Gemischgeschwindigkeit in horizontaler Rohrleitung 3.1.5 Die kritische Gemischgeschwindigkeit in geneigter Rohrleitung 3.1.6 Weitere Rechenmodelle 3.2 Erweiterung des Energiegesetzes auf Gemischströmung 3.2.1 In horizontaler Rohrleitung 3.2.2 In geneigter Rohrleitung 3.2.3 In vertikaler Rohrleitung 4 Experimentelle Untersuchungen 4.1 Aufbau der ersten Versuchsanlage 4.2 Messtechnik 4.3 Umbau der Versuchsanlage 4.4 Untersuchungsmaterial 4.5 Experimentelles Verfahren 5 Numerische Simulationen mit ANSYS-Fluent 5.1 Grundlagen der Mehrphasenströmungen 5.2 Auswahl des numerischen Modells 5.3 Das Granular-Euler-Modell 5.3.1 Die Erhaltungsgleichung 5.3.2 Die kinetische Theorie der dispersen Phase 5.4 Modellvalidierung 6 Vorstellung der Untersuchungsergebnisse 6.1 Ergebnisse der experimentellen Untersuchungen in horizontaler Leitung 6.1.1 Experimentelle Untersuchungen zum Energieverlust 6.1.2 Experimentelle Untersuchung zu der kritischen Geschwindigkeit 6.2 Ergebnisse der hydronumerischen Untersuchungen in horizontaler Rohrleitung 6.2.1 Randbedingungen 6.2.2 Numerische Lösung und Konvergenz 6.2.3 Parameteranalyse anhand eigener Versuche 6.2.4 Numerische Untersuchungen zur Wechselwirkung zwischen den hydraulischen Kenngrößen 6.3 Ergebnisse der experimentellen Untersuchungen in vertikaler Leitung 6.4 Ergebnisse der experimentellen Untersuchungen in geneigter Rohrleitung 6.4.1 Experimentelle Untersuchungen zum Energieverlust 6.4.2 Experimentelle Untersuchung zu der kritischen Gemischgeschwindigkeit 6.5 Ergebnisse der numerischen Untersuchungen in geneigter Rohrleitung 7 Fehleranalyse und weitere Betrachtungen 7.1 Degradierung des Feststoffes 7.2 Die Abnutzung der Pumpe 7.3 Abrieb und Durchbruch der Rohrleitungen 7.4 Die Instabilität des Systems bei geringen Geschwindigkeiten 7.5 Messabweichung des Durchflussmessers 7.6 Fehlerquelle bei der Untersuchung der kritischen Gemischgeschwindigkeit 7.7 Fortbewegung der Feststoffe bei Geschwindigkeiten unterhalb vcrit 7.8 Einfluss der Transportkonzentration auf den Arbeitspunkt der Pumpe 8 Zusammenfassung Literaturverzeichnis Anhang
110

Polymerizable BODIPY Probes for Molecularly Imprinted Optical Sensing

Sun, Yijuan 10 October 2024 (has links)
Ein aktueller Forschungsschwerpunkt in der analytischen Chemie ist die Entwicklung (bio)chemischer Sensoren mit hoher Selektivität, Empfindlichkeit und schnellem Ansprechverhalten für den Nachweis und das Monitoring von besorgniserregenden Analyten in Realproben. Fluoreszierende molekular geprägte Sensormaterialien bieten einen innovativen Ansatz, indem sie die spezifischen Erkennungsfähigkeiten molekular geprägter Polymere (MIPs) mit der hohen Empfindlichkeit der Fluoreszenzdetektion kombinieren. Ziel dieser Arbeit war es, MIPs mit optischen Sensoreigenschaften zu entwickeln, um Umweltschadstoffe schnell und spezifisch nachzuweisen. Zur Konstruktion von MIPs mit außergewöhnlichen optischen Eigenschaften wurden fluoreszierende Sonden-Monomere auf Basis des Bor-Dipyrromethen (BODIPY)-Fluorophors entwickelt, synthetisiert und charakterisiert. Verschiedene Akzeptor-Einheiten wurden in das BODIPY-Gerüsts eingeführt, um das Ansprechverhalten auf Zielanalyten mit Carboxylatfunktionen (z.B. Arzneimittelwirkstoffe, Pestizide, oberflächenaktive Substanzen) zu untersuchen. Diese fluoreszierenden Sonden-Moleküle wurden mit polymerisierbaren Einheiten ausgestattet, um ihre kovalente Einbindung in ein quervernetztes MIP-Netzwerk zu ermöglichen, das als Erkennungselement und Signalübermittler dient. Die Molekülstrukturen wurden durch Röntgenkristallanalyse bestätigt. Mit Hilfe spektroskopischer Methoden wurden die photophysikalischen Eigenschaften der Sonden-Monomere und ihre Bindungsaffinität für die Zielmoleküle untersucht, wobei die Sonden-Monomere eine starke Fluoreszenz im sichtbaren bis nahen Infrarotbereich aufwiesen und bemerkenswerte spektrale Veränderungen bei der Bindung mit den Zielanalyten zeigten. Der Einbau der Sonden in MIP-Schalen auf Siliziumdioxid-Kernpartikeln ermöglichte den selektiven Nachweis eines bestimmten Antibiotikums gegenüber anderen Antibiotika mit ähnlichen funktionellen Gruppen. Weiterhin wurden rot-emittierende BODIPY-Farbstoffe zur Dotierung von Polymerkernen eingesetzt, um ein Sensorsystem mit dualer Emission (d. h., mit Farbstoff dotierter Polymerkern/SiO2-Schale/fluoreszierendes Sonden-Monomer enthaltende MIP-Schale). Diese sensorischen MIPs zeigten eine ratiometrische Fluoreszenzantwort auf ein Antihistaminikum, wobei das eingebaute Referenzsignal im Kern eine Selbstkalibrierung in den Assays ermöglichte. Ein weiteres dual fluoreszierendes MIP-Sensormaterial (d. h. farbstoffdotierter Siliziumdioxidkern/fluoreszierendes Sonden-Monomer enthaltende MIP-Schale) wurde für die direkte Messung von Perfluorcarbonsäuren entwickelt. Die Integration der sensorischen MIPs in einen mikrofluidischen Aufbau führte zu einer mobilen und vielseitigen Sensorplattform, die einfach zu bedienen ist. / One of the current focal points of research in the field of analytical chemistry is the development of (bio)chemical sensors with high selectivity, sensitivity, and rapid response for the detection and monitoring of analytes of high concern in complicated samples. Fluorescent molecularly imprinted sensor materials represent a cutting-edge approach to developing sensors that combine the specific recognition capabilities of molecularly imprinted polymers (MIPs) with the high sensitivity of fluorescence detection. The objective of this thesis was to design, synthesize, and evaluate MIPs with optical sensing properties, focusing mainly on fluorescence, with the aim of rapidly and specifically detecting emerging environmental contaminants. To construct MIPs with exceptional optical characteristics and a well-defined binding mechanism for the recognition of target molecules, a series of tailor-made fluorescent probe monomers based on the boron-dipyrromethene (BODIPY) fluorophore have been designed, synthesized and characterized. Identical acceptor modules were introduced at various positions, or different acceptor modules were introduced at the same position of the BODIPY scaffold, to preliminarily investigate the response behavior of different types of probe monomers for target analytes containing carboxylate functions, ranging from pharmaceuticals to pesticides and surfactants. Additionally, one or two polymerizable units were attached to these fluorescent probe molecules to enable their covalent incorporation into a crosslinked MIP network, serving as recognition element and signal transducers. The molecular structures of these probe monomers were confirmed via X-ray crystal analysis. Spectroscopic approaches were employed to assess the photophysical characteristics of the probe monomers and their binding affinities for the target molecules. These probe monomers exhibited strong fluorescence in the visible-to-near infrared wavelength region, along with remarkable spectral changes upon binding with the target analytes. Incorporation of the fluorescent probes into MIP shells on silica cores achieved selective detection of a targeted antibiotic from other antibiotics with similar carboxylate, amine and aromatic functional groups. In addition, the synthesis of red-emitting BODIPY dyes for doping into polymer cores facilitated the fabrication of a dual-emission sensing system (i.e., dye-doped polymer core/silica shell/MIP shell). The sensory MIPs exhibited a ratiometric fluorescence response to an antihistaminic drug and the presence of a built-in reference signal in the core provided self-calibration for MIP assays. Furthermore, another dual-fluorescent MIP sensor material was engineered (i.e., dye-doped silica core/MIP shell) for the direct monitoring of perfluorocarboxylic acids. The integration of the sensory MIPs into a dedicated microfluidic setup resulted in a portable and easy-to-operate versatile sensing platform.

Page generated in 0.0669 seconds