• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mobile music touch: using haptic stimulation for passive rehabilitation and learning

Markow, Tanya Thais 30 March 2012 (has links)
Hand rehabilitation after injury or illness may allow a patient to regain full or at least partial use of a limb. However, rehabilitation often requires the patient to perform multiple repetitions of motions. While absolutely essential to regaining usage, such exercises are not always mentally engaging or enjoyable for the patient. The loss or degradation of the use of the hands can cause considerable loss of independence. In this dissertation, we present Mobile Music Touch (MMT), a wireless glove paired with a computing device, such as a laptop, smart phone, or MP3 player. The MMT system plays a song, while also "tapping" the fingers using vibration motors to indicate the correct finger to use to play the song on a piano keyboard. Learning a new skill or activity without active focus, an idea called Passive Haptic Learning(PHL) may allow an individual to learn one skill through their sense of touch while performing another, unrelated activity. Most rehabilitation activities are active in nature, requiring the focused participation of the injured person. Passive rehabilitation is the idea that some technologies and activities may bring about beneficial changes without the active engagement of the injured person. In order to study the concepts of PHL and PHR, we propose the Mobile Music Touch (MMT) system. We show that using passive rehabilitation in conjunction with the active rehabilitation of piano playing will bring about a greater degree of improvement in the hands than that achieved using only active rehabilitation. This dissertation research makes three unique contributions. First, we demonstrate that Passive Haptic Learning (PHL) using just the sense of touch is feasible and provides a form of learning and reinforcement of learned skills and tasks. Second, we identify the attributes and design features of a glove suited for long term wear by persons who use a manual wheelchair for mobility. Third, we show that Passive Haptic Rehabilitation (PHR) is possible using vibrotactile stimulation of the hands in persons classified as tetraplegic due to incomplete spinal cord injury.
2

Control limitation analysis for dissipative passive haptic interfaces

Gao, Dalong 18 November 2005 (has links)
This research addresses the ability of dissipative passive actuators to generate control effects on a passive haptic interface. A haptic display is a human-machine interface that constructs a sensation of touch for the human operator. Applications can be found in various industries, space, medicine and construction etc. A dissipative passive haptic display contains passive actuators that can remove energy from the system by resisting motions in the system. The advantage of a dissipative passive haptic display is better safety compared to an active display. Its disadvantage is the limited control ability from the passive actuators. This research starts with the identification of the control ability and limitations of dissipative passive haptic interfaces. The ability is identified as the steerability, the ability to redirect motions of a manipulator. The force generation analysis of each individual actuator is then selected as an approach to evaluate the steerability. Steerability metrics are defined to evaluate the steerability. Even though non-redundant manipulators dont have desired steerability, optimal steering configurations are found for the best operation. Steerability is improved by redundancy in serial or parallel structures. A theorem is developed to evaluate steerability for redundant manipulators. The influence of system dynamics on their steerabilities is discussed. Previously developed haptic interfaces are evaluated based on their steerabilities. Steerability analysis of three-dimensional haptic interfaces is also given to a limited extent as an extension of the two-dimensional cases. Brakes and clutches are the two types of dissipative passive actuators in this research.
3

Applied Virtual Reality Training for Scalable Skill Acquisition in Hand Tool Focused Trades

Levi Andrew Erickson (15339334) 22 April 2023 (has links)
<p> Skilled trades are in demand across many industries and many countries. Skilled trades refer to occupations that require training and proficiency in a specialized field, such as weld?ing, carpentry, or mechanics. The challenge is upskilling workers to become suited for these positions. One way training might be made more accessible is through low cost VR applica?tions as they can provide a ’learn by doing’ modality that is effective for learning motor skills, and also engaging for providing a holistic training experience. In this thesis, design guide?lines and a methodology for creating training programs that target hand tool based skills are laid out, tested, and refined for future usage. Working with content experts, a learning plan was developed via the backward design methodology, evaluated in a user study, and then applied to a second use case. The results of the user study showed that those who trained with VR were able to perform the prescribed task more quickly and with less mistakes. The implication of the second use case is that the established guidelines are versatile enough to be applied to other industries and simple enough to adapt industry specific knowledge to. The hope is that this work can help bridge the gap between the theoretical possibilities of VR training, effective training methodology, and real world application. </p>

Page generated in 0.3334 seconds