Spelling suggestions: "subject:"pax"" "subject:"pa6""
31 |
Study of the Phosphorylation of PAX6 Transactivation Domain In Vitro and In VivoPeipei, Qi 02 May 2022 (has links)
No description available.
|
32 |
Régulation de l’expression du gène Six6 par les facteurs de transcription Lhx2 et Pax6 dans le contexte des cellules souches rétiniennesChampagne, Marie-Pier 08 1900 (has links)
La rétinogésèse des vertébrés est la culmination de processus biologiques
complexes parfaitement exécutés. Cette délicate orchestration est principalement contrôlée par les facteurs de transcription qui permettent aux progéniteurs rétiniens de proliférer, de s’auto-renouveler et de se différencier de façon appropriée. Les facteurs de transcription à homéodomaine sont les protéines qui sont responsables de la démarcation du site du primordium optique et participeront même à la différenciation tardive des différents types cellulaires de la rétine. Le contrôle génétique concernant l‘activation de l’expression de facteurs de transcription est peu connu. Nous avons étudié les séquences génomique avoisinant le gène Six6 afin d’identifier et mieux comprendre son promoteur. Des expériences d’immunoprécipitation de chromatine et des essais luciférases ont confirmé la liaison et la transactivation synergique du promoteur potentiel de Six6 par Lhx2 et Pax6 in vitro. Cette présente étude confirme et précise également le rôle de Lhx2 au niveau du développement précoce de l’oeil. La compréhension détaillée des réseaux génétiques régulant les progéniteurs rétiniens à former une rétine fonctionnelle est essentielle. En effet, lorsque ces connaissances seront acquises, nous serons en mesure d’appliquer les thérapies
cellulaires pour rétablir les fonctions rétiniennes lors de pathologies dégénératives. / Vertebrate eye developement is the result of multiple perfectly executed biological
process. This tight orchestration is principaly controled by transcription factors. Homeobox-containing transcription factors are expressed in the presumptive eye field and are required to initiate eye development and for final retinal cell differenciation. The genetic control of these transcription factors are poorly understood. We analysed Six6’s nearby genomic sequence to caracterise potential promoter regions. Chromatin immunoprecipitations and luciferase assays confirmed the binding and the in vitro synergic trans-activation of Six6 potential promoter by Lhx2 and Pax6. This study also demonstrate the contribution of Lhx2 for the establishment of presumptive retina field at the neural plate stage. The detailed knowledge of genetic networks regulating the formation of a fonctional retina by retinal progenitor is crucial. Indeed, when these mecanisms will be eluciated, we will be able to establish regenerative retinal cell therapy.
|
33 |
FACTEURS IMPLIQUES DANS LA DIFFERENCIATION ET LA TRANSDIFFERENCIATION DE L'EPITHELIUM CORNEENYang, Ying 25 February 2005 (has links) (PDF)
Plusieurs questions concernant les mécanismes de différenciation de l'épithélium cornéen ont été abordées: premièrement, le cristallin est-il réellement l'inducteur de la cornée? La kératine 12 (K12) est-elle spécifique de l'épithélium cornéen ou bien est-elle exprimée aussi dans d'autres épithélia? Enfin, quels sont les rôles respectifs du gène Pax6, le chef d'orchestre de la morphogenèse oculaire et des messages qui pourraient être transmis par le stroma cornéen?<br /> Chez l'embryon de poulet de 2/3 jours, Pax6 est exprimé dans les noyaux non seulement des futurs tissus oculaires, mais aussi dans le cerveau, ainsi que dans l'épithélium nasal et oral. Après l'individualisation de la cornée, Pax6 continue d'être exprimé tout au long de la vie non seulement embryonnaire, mais aussi de la vie adulte. Par contre, l'expression de Pax6 est éteinte après 7 jours d'incubation dans l'épithélium nasal et oral.<br /> L'expression de K12, marqueur de différenciation de l'épithélium est facilement observable seulement à partir d'un stade embryonnaire relativement avancé : 14 jours d'incubation pour le poulet, 21 jours de gestation pour le lapin, et tout au long de la vie adulte. Cette expression est spécifique de l'épithélium cornéen.<br /> J'ai transfecté le cDNA codant pour une forme active de Pax6 (couplée à l'activateur VP16) chez l'embryon de poulet de 2.5 à 3 jours d'incubation, par la technique d'électroporation in ovo. Le résultat est une orientation dorso/ventrale anormale de l'œil, montrant l'importance d'une régulation fine et précise de la quantité et de la localisation de la protéine Pax6. Cependant aucune formation ectopique de tissus oculaires n'en a résulté.<br /> J'ai étudié le rôle du cristallin, présenté comme l'inducteur de la cornée. Contrairement à ce qui a été publié antérieurement, celui-ci est seulement requis pour la croissance de l'œil mais ni pour la migration des fibroblastes formant le stroma de la cornée, ni pour l'expression de K12 dans son épithélium.<br /> Afin d'étudier la question du rôle éventuel du stroma lors de l'activation des gènes Pax6, puis K12, j'ai réalisé plusieur types de recombinaisons épithélio/mésenchymateuses. Les recombinants ont été greffés sous la capsule du rein de souris athymique. Les expériences réalisées avec les tissus d'embryon de poulet montrent que Pax6 peut être éteint et le futur épithelium cornéen transformé en épiderme et en plumes seulement avant 5 jours d'incubation. En collaboration avec le Dr. David Pearton, nous avons montré que au contraire chez les mammifères, Pax6 peut être éteint et la formation d'un épiderme et de follicules pileux obtenus même à partir d'un épithélium cornéen prélevé chez l'adulte. <br /> L'insuffisance du nombre de donneurs pour les greffes de cornée est un challenge. Nous nous sommes donc demandés si la transformation inverse de divers épithéliums en épithélium cornéen ètait réalisable. Ni l'association avec un stroma cornéen, ni la transfection de Pax6 n'a permis d'obtenir ce résultat.
|
34 |
Régulation de l’expression du gène Six6 par les facteurs de transcription Lhx2 et Pax6 dans le contexte des cellules souches rétiniennesChampagne, Marie-Pier 08 1900 (has links)
La rétinogésèse des vertébrés est la culmination de processus biologiques
complexes parfaitement exécutés. Cette délicate orchestration est principalement contrôlée par les facteurs de transcription qui permettent aux progéniteurs rétiniens de proliférer, de s’auto-renouveler et de se différencier de façon appropriée. Les facteurs de transcription à homéodomaine sont les protéines qui sont responsables de la démarcation du site du primordium optique et participeront même à la différenciation tardive des différents types cellulaires de la rétine. Le contrôle génétique concernant l‘activation de l’expression de facteurs de transcription est peu connu. Nous avons étudié les séquences génomique avoisinant le gène Six6 afin d’identifier et mieux comprendre son promoteur. Des expériences d’immunoprécipitation de chromatine et des essais luciférases ont confirmé la liaison et la transactivation synergique du promoteur potentiel de Six6 par Lhx2 et Pax6 in vitro. Cette présente étude confirme et précise également le rôle de Lhx2 au niveau du développement précoce de l’oeil. La compréhension détaillée des réseaux génétiques régulant les progéniteurs rétiniens à former une rétine fonctionnelle est essentielle. En effet, lorsque ces connaissances seront acquises, nous serons en mesure d’appliquer les thérapies
cellulaires pour rétablir les fonctions rétiniennes lors de pathologies dégénératives. / Vertebrate eye developement is the result of multiple perfectly executed biological
process. This tight orchestration is principaly controled by transcription factors. Homeobox-containing transcription factors are expressed in the presumptive eye field and are required to initiate eye development and for final retinal cell differenciation. The genetic control of these transcription factors are poorly understood. We analysed Six6’s nearby genomic sequence to caracterise potential promoter regions. Chromatin immunoprecipitations and luciferase assays confirmed the binding and the in vitro synergic trans-activation of Six6 potential promoter by Lhx2 and Pax6. This study also demonstrate the contribution of Lhx2 for the establishment of presumptive retina field at the neural plate stage. The detailed knowledge of genetic networks regulating the formation of a fonctional retina by retinal progenitor is crucial. Indeed, when these mecanisms will be eluciated, we will be able to establish regenerative retinal cell therapy.
|
35 |
Characterization Of Down Regulated Genes In AstrocytomaBhanja, Poulomi 05 1900 (has links) (PDF)
Gliomas are the most common primary brain tumors and include astrocytomas, oligodendrogliomas and oligoastrocytomas. Astrocytomas have a high frequency of occurrence as compared to the other gliomas and several studies including ours have focused on understanding the etiology, biology and genetics of this disease. Based on the degree of malignancy, astrocytomas have been graded from I to IV. Grade I or pilocytic astrocytomas are benign tumors and have limited infiltration. On the contrary, Grade II-IV astrocytomas also referred to as diffusely infiltrating astrocytomas (DA, Grade II), anaplastic astrocytomas (AA, Grade III) and glioblastoma multiforme (GBM, Grade IV), have the tendency of diffusely infiltrating the normal brain parenchyma. GBM is characterized by uncontrolled proliferation and resistance to apoptosis, rampant invasion, recalcitrance to most established therapies etc which makes them the most aggressive of all gliomas with a median survival of about 12 months. This makes it imperative to initiate further studies to understand the molecular basis of this disease. Gene expression profiling studies have been central to this effort. In recent years, several Microarray studies have provided crucial insights into the biological role of novel genes not previously associated with astrocytomas.
In a previous Microarray study, several differentially regulated genes in astrocytoma were identified in our laboratory. In addition to many up regulated genes, several down regulated genes were also identified in this study. Down regulated genes are interesting to study because of their relevance as possible tumor suppressor genes. Hence, we decided to characterize the regulation and functional significance of few down regulated genes. The specific objectives of the study are as follows
1)To validate novel down‐regulated genes in astrocytomas identified by a previous Microarray study.
2)To understand the mechanism of down-regulation of a few selected gene. 3)Functional characterization of DIRAS2, a novel astrocytoma down‐regulated gene with respect to its possible role in astrocytoma progression.
Towards these objectives, we identified 21 genes as differentially down-regulated across all grades of astrocytoma based on a previous Microarray study from our lab and data from literature. Real time qRT-PCR analysis performed on these 21 genes confirmed their down-regulation in all grades of astrocytoma as compared to normal brain tissues. From these 21 genes, we short-listed 10 of the most consistently down-regulated genes for further analysis. These genes were DIRAS2, IGFBP9, MAL2, MBP, OLFM1, PACSIN1, RAB26, SYT1, SYT5 and VSNL1. We also confirmed the expression of two of the genes, OLFM1 and RAB26 at the protein level by performing immunohistochemical analysis on an independent set of 38 tissues that included 10 normal tissues and 28 tissues from different grades of astrocytoma. OLFM1 was found to be down-regulated in a grade specific manner. RAB26 expression was found to be strikingly high in all the low grade astrocytomas in comparison to high grade astrocytomas which made it an interesting gene to study functionally. On functional characterization, we found that RAB26 over‐expressing LN229 cells showed significantly reduced invasion compared to the vector transfected cells suggesting RAB26 could have a tumor-suppressing role in astrocytomas.
In order to investigate whether transcriptional modulation could play a role in the down-regulation of these 10 genes, we searched for transcription factor binding sites in approximately 2kb 5’ flanking region of each gene. Intriguingly one or more PAX6 binding sites were present in all their promoters. In light of the fact that PAX6 has been proposed as a tumor‐suppressor in astrocytomas, we predicted that some of these genes could be targets of PAX6 transactivation and could possibly mediate some of the tumor‐suppressive actions of PAX6. PAX6 has been proposed as a down stream target of Notch signaling in the context of eye development. Similar to this observation, upon activation of Notch signaling with a virus expressing human intracellular domain of Notch (Ad-NIC-1), PAX6 expression was found to be induced in glioma cell lines suggesting PAX6 to be a novel NOTCH target in astrocytomas. In addition, Ad-NIC-1 infection could also induce the expression of OLFM1, RAB26, MAL2 and MBP in U343 cells. We could also demonstrate that Ad-NIC-1 co-operates with PAX6 in the regulation of these four genes in cell lines expressing endogenous PAX6, namely U343 and U251. Intriguingly, in a cell-line lacking PAX6 expression (LN229), Ad-NIC-1 could not induce OLFM1, RAB26 and MBP, although we could see induction of MAL2. Interestingly, PAX6 overexpression in LN229 cells in the absence of Ad-NIC-1 could induce OLFM1, RAB26 and MAL2. In contrast, infection of Ad-NIC-1 on the PAX6 over-expressing cells seemed to have an antagonistic effect on the expression of OLFM1, RAB26 and MBP, suggesting that Ad-NIC-1 antagonizes PAX6 actions in these cells.
Ad-NIC-1 infection resulted in increased apoptosis in a PAX6 independent manner in U343 cells, which as previously mentioned has high levels of PAX6 endogenous expression. Conversely, Ad-NIC-1 could not induce apoptosis in LN229 cells, which has negligible expression of PAX6. We could also demonstrate that apoptosis induced in U343 cells could be in a p53 dependent manner. Activation of AMPK pathway and inhibition of the mTOR pathway as a consequence of p53 induction could also explain the Ad-NIC-1 mediated apoptosis that was seen in these cells. Thus, we have proposed that Notch signaling could possibly have a tumor-suppressing role in the presence of PAX6. We also suggest that down-regulation of OLFM1, RAB26, MAL2 and MBP via the NOTCH-PAX6 axis could be a possible molecular mechanism for the down-regulation of these genes.
With respect to the third objective, we sought to characterize DIRAS2 with respect to its function in astrocytomas. DIRAS2 was identified as a down‐regulated gene in all grades of astrocytoma by our Microarray study. We were also able to validate the down‐regulation of DIRAS2 in all grades of astrocytomas. DIRAS2 also bears significant homology to RIG1 (also known as DIRAS1), which has been proposed as a tumor suppressor gene in astrocytomas. In the light of these data, we predicted that DIRAS2 could be a tumor suppressor gene in astrocytomas. Overexpression of DIRAS2 in two glioma cell lines U87 and C6 did not reveal any appreciable change in proliferation. Strikingly when the DIRAS2 over-expressing clones were grown in the absence of serum, there was marked increase in proliferation with respect to vector transfected clones along with a distinct change in morphology. Decorin expression in the DIRAS2 over-expressing clones was found to be up regulated and could be responsible for the altered morphology as well as enhanced viability in absence of serum. Interestingly along with Decorin expression, we also observed an increase in phosphor-SMAD2 levels indicative of activated TGF‐β signaling in the DIRAS2 over-expressing clones in the absence of serum. In the soft agar and migration/invasion assays, the results across the two cell lines, U87 and C6 were contrasting. DIRAS2 over-expressing clones of U87 cells formed visibly larger and increased number of colonies as compared to vector transfected clones and there was about a three fold increase in invasion with respect to that seen in vector transfected clones in the matrigel invasion assay. On the other hand, DIRAS2 over-expressing C6 clones formed colonies of smaller size compared to vector transfected clones and a marked decrease in migration was observed in the DIRAS2 over-expressing clones of C6. The discrepancies in the results in these two cell lines could be attributed to the presence of other regulators of DIRAS2 function unique to each of the two cell lines. Although in the present study, the results with respect to its predicted function as a tumor-suppressor gene has not been conclusive, the role of DIRAS2 in tumorigenesis may depend on the cellular context in which the protein is expressed.
Overall in this study, we have identified a novel down regulated gene signature in astrocytomas consisting of OLFM1, RAB26, MAL2 and MBP. Furthermore, we have proposed that inhibition of NOTCH and PAX6 signaling pathways could be responsible for the down-regulated expression of OLFM1, RAB26, MAL2 and MBP in astrocytomas. Collectively, these results suggest that astrocytomas with activated Notch1 and/or Pax6 signaling could have good prognosis due to the tumor suppressive actions of OLFM1, RAB26, MAL2 and MBP
|
36 |
Exploring the role of fibroblast growth factor (FGF) signaling in mouse lens fiber differentiation through tissue-specific disruption of FGF receptor gene familyZhao, Haotian 17 March 2004 (has links)
No description available.
|
37 |
Charakterisierung eines neuen Proteins, Mapl-1 und seine Rolle in der Regulation der Pax-6 Funktion. / Characterization of a novel protein and its role in the regulation of Pax-6 function.Petrou, Petros 01 November 2001 (has links)
No description available.
|
38 |
Étude du rôle de Pax6 dans la gliogenèseCannizzaro, Enrica 08 1900 (has links)
Les astrocytes sont des cellules gliales présentes dans le système nerveux central, qui exercent de nombreuses fonctions physiologiques essentielles et sont impliquées dans la réponse aux lésions et dans plusieurs pathologies du cerveau. Les astrocytes sont générés par les cellules de la glie radiale, les précurseurs communs de la plupart des cellules neuronales et gliales du cerveau, après le début de la production des neurones. Le passage de la neurogenèse à la gliogenèse est le résultat de mécanismes moléculaires complexes induits par des signaux intrinsèques et extrinsèques responsables du changement de propriété des précurseurs et de leur spécification. Le gène Pax6 code pour un facteur de transcription hautement conservé, impliqué dans plusieurs aspects du développement du système nerveux central, tels que la régionalisation et la neurogenèse. Il est exprimé à partir des stades les plus précoces dans les cellules neuroépithéliales (les cellules souches neurales) et dans la glie radiale, dérivant de la différenciation de ces cellules. L’objectif de cette étude est d’analyser le rôle de Pax6 dans la différenciation et dans le développement des astrocytes. À travers l’utilisation d’un modèle murin mutant nul pour Pax6, nous avons obtenu des résultats suggérant que la suppression de ce gène cause l'augmentation de la prolifération et de la capacité d'auto-renouvellement des cellules souches neurales embryonnaires. In vitro, les cellules mutantes prolifèrent de façon aberrante et sous-expriment les gènes p57Kip2, p16Ink4a, p19Arf et p21Cip1, qui inhibent la progression du le cycle cellulaire. De plus, Pax6 promeut la différenciation astrocytaire des cellules souches neurales embryonnaires et est requis pour la différenciation des astrocytes dans la moëlle épinière. Les mutants nuls pour Pax6 meurent après la naissance à cause de graves défauts développementaux dus aux fonctions essentielles de ce gène dans le développement embryonnaire de plusieurs organes. En utilisant un modèle murin conditionnel basé sur le système CRE/ loxP (hGFAP-CRE/ Pax6flox/flox) qui présente l’inactivation de Pax6 dans les cellules de la glie radiale, viable après la naissance, nous avons montré que Pax6 est impliqué dans la maturation et dans le développement post-natal des astrocytes. Le cortex cérébral des souris mutantes conditionnelles ne présente pas d’astrocytes matures à l’âge de 16 jours et une très faible quantité d’astrocytes immatures à l’âge de trois mois, suggérant que Pax6 promeut la différenciation et la maturation des astrocytes. De plus, Pax6 semble jouer un rôle même dans le processus de différenciation et de maturation de cellules gliales rétiniennes. L’étude des gènes et des mécanismes moléculaires impliqués dans la génération des astrocytes est crucial pour mieux comprendre le rôle physiologique et les altérations pathologiques des ces cellules. / Astrocytes, a subtype of glial cells present in the central nervous system, have multiple physiological functions and are involved in the response to lesions and in several brain pathologies. Astrocytes are generated by radial glia cells, the common precursors of most neural and glial cells of the brain, after the beginning of neurons production. The transition from neurogenesis to gliogenesis is the result of complex molecular mechanisms induced by both intrinsic and extrinsic signals responsible for the change of precursors properties and commitment. The Pax6 gene encodes a highly conserved transcription factor, involved in several aspects of central nervous system development, such as regionalization and neurogenesis. It is expressed from the earliest stages in the neuroepithelial cells (neural stem cells) and in their more differentiated radial glia progeny. The aim of this study was to analyze the role of Pax6 in the differentiation and development of astrocytes. By using a Pax6 null mutant mouse, we obtained results suggesting that the suppression of this gene increases the proliferation and the self-renewal ability of embryonic neural stem cells. In vitro mutant cells overproliferate and overexpress p57Kip2, p16Ink4a, p19Arf et p21Cip1 genes, which inhibit the cell cycle progression. Moreover Pax6 promotes astrocytic differentiation of embryonic neural stem cells and is required for astrocyte differentiation in spinal cord. Pax6 null mutants die after birth because of severe developmental defects, due to the essential functions of this gene in embryonic development of several organs. Using a conditional mutant mouse of Pax6 in radial glia (hGFAP-CRE/ Pax6flox/flox, based on site-specific Cre/loxP-mediated gene excision), which is viable after birth, we obtained evidences showing that Pax6 is involved in astrocyte maturation and postnatal development. The cerebral cortex of sixteen-day-old conditional mutant mice doesn’t present mature astrocytes, and the three-month-old mice cortex presents only few immature astrocytes, suggesting that Pax6 promotes astrocyte differentiation and maturation. Moreover Pax6 seems to play a role also in the maturation and differentiation of retinal glial cells. The identification of genes and molecular pathways involved in the generation of astrocytes is crucial to better understand the physiological function and pathological alterations of these cells.
|
39 |
Molekulare Analyse eines Homöobox-Gen-Promotors in der Gehirnanlage von Wirbeltierembryonen / Molecular analysis of a homeobox gene promotor in the prospective forebrain of vertebratesSpieler, Derek 07 April 2005 (has links)
No description available.
|
40 |
Étude du rôle de Pax6 dans la gliogenèseCannizzaro, Enrica 08 1900 (has links)
Les astrocytes sont des cellules gliales présentes dans le système nerveux central, qui exercent de nombreuses fonctions physiologiques essentielles et sont impliquées dans la réponse aux lésions et dans plusieurs pathologies du cerveau. Les astrocytes sont générés par les cellules de la glie radiale, les précurseurs communs de la plupart des cellules neuronales et gliales du cerveau, après le début de la production des neurones. Le passage de la neurogenèse à la gliogenèse est le résultat de mécanismes moléculaires complexes induits par des signaux intrinsèques et extrinsèques responsables du changement de propriété des précurseurs et de leur spécification. Le gène Pax6 code pour un facteur de transcription hautement conservé, impliqué dans plusieurs aspects du développement du système nerveux central, tels que la régionalisation et la neurogenèse. Il est exprimé à partir des stades les plus précoces dans les cellules neuroépithéliales (les cellules souches neurales) et dans la glie radiale, dérivant de la différenciation de ces cellules. L’objectif de cette étude est d’analyser le rôle de Pax6 dans la différenciation et dans le développement des astrocytes. À travers l’utilisation d’un modèle murin mutant nul pour Pax6, nous avons obtenu des résultats suggérant que la suppression de ce gène cause l'augmentation de la prolifération et de la capacité d'auto-renouvellement des cellules souches neurales embryonnaires. In vitro, les cellules mutantes prolifèrent de façon aberrante et sous-expriment les gènes p57Kip2, p16Ink4a, p19Arf et p21Cip1, qui inhibent la progression du le cycle cellulaire. De plus, Pax6 promeut la différenciation astrocytaire des cellules souches neurales embryonnaires et est requis pour la différenciation des astrocytes dans la moëlle épinière. Les mutants nuls pour Pax6 meurent après la naissance à cause de graves défauts développementaux dus aux fonctions essentielles de ce gène dans le développement embryonnaire de plusieurs organes. En utilisant un modèle murin conditionnel basé sur le système CRE/ loxP (hGFAP-CRE/ Pax6flox/flox) qui présente l’inactivation de Pax6 dans les cellules de la glie radiale, viable après la naissance, nous avons montré que Pax6 est impliqué dans la maturation et dans le développement post-natal des astrocytes. Le cortex cérébral des souris mutantes conditionnelles ne présente pas d’astrocytes matures à l’âge de 16 jours et une très faible quantité d’astrocytes immatures à l’âge de trois mois, suggérant que Pax6 promeut la différenciation et la maturation des astrocytes. De plus, Pax6 semble jouer un rôle même dans le processus de différenciation et de maturation de cellules gliales rétiniennes. L’étude des gènes et des mécanismes moléculaires impliqués dans la génération des astrocytes est crucial pour mieux comprendre le rôle physiologique et les altérations pathologiques des ces cellules. / Astrocytes, a subtype of glial cells present in the central nervous system, have multiple physiological functions and are involved in the response to lesions and in several brain pathologies. Astrocytes are generated by radial glia cells, the common precursors of most neural and glial cells of the brain, after the beginning of neurons production. The transition from neurogenesis to gliogenesis is the result of complex molecular mechanisms induced by both intrinsic and extrinsic signals responsible for the change of precursors properties and commitment. The Pax6 gene encodes a highly conserved transcription factor, involved in several aspects of central nervous system development, such as regionalization and neurogenesis. It is expressed from the earliest stages in the neuroepithelial cells (neural stem cells) and in their more differentiated radial glia progeny. The aim of this study was to analyze the role of Pax6 in the differentiation and development of astrocytes. By using a Pax6 null mutant mouse, we obtained results suggesting that the suppression of this gene increases the proliferation and the self-renewal ability of embryonic neural stem cells. In vitro mutant cells overproliferate and overexpress p57Kip2, p16Ink4a, p19Arf et p21Cip1 genes, which inhibit the cell cycle progression. Moreover Pax6 promotes astrocytic differentiation of embryonic neural stem cells and is required for astrocyte differentiation in spinal cord. Pax6 null mutants die after birth because of severe developmental defects, due to the essential functions of this gene in embryonic development of several organs. Using a conditional mutant mouse of Pax6 in radial glia (hGFAP-CRE/ Pax6flox/flox, based on site-specific Cre/loxP-mediated gene excision), which is viable after birth, we obtained evidences showing that Pax6 is involved in astrocyte maturation and postnatal development. The cerebral cortex of sixteen-day-old conditional mutant mice doesn’t present mature astrocytes, and the three-month-old mice cortex presents only few immature astrocytes, suggesting that Pax6 promotes astrocyte differentiation and maturation. Moreover Pax6 seems to play a role also in the maturation and differentiation of retinal glial cells. The identification of genes and molecular pathways involved in the generation of astrocytes is crucial to better understand the physiological function and pathological alterations of these cells.
|
Page generated in 0.0551 seconds