1 |
Os ambientes de geometria dinâmica e o pensamento hipotético-dedutivoGravina, Maria Alice January 2001 (has links)
O processo de demonstração é axial na construção do conhecimento matemático. Na geometria euclidiana, ele é um dos aspectos que apresenta grandes obstáculos aos alunos. Uma das dificuldades aparece na transição, necessária, entre o conhecimento de natureza empírica, já adquirido, e aquele a ser construído: a geometria euclidiana enquanto modelo teórico, organizado em axiomas, teoremas e demonstrações. Os recursos informáticos hoje disponíveis provocam a busca de estratégias pedagógicas favoráveis à construção deste conhecimento. Entender as suas potencialidades torna-se um objeto de investigação: o que acontece com os processos cognitivos quando ao sujeito em interação com a máquina é possibilitada a concretização de seus construtos e ações mentais, e quando, mediante realimentação imediata, ele é levado a novas reelaborações e construções mentais? E como tais processos concorrem para um novo conhecimento? Esta tese propõe uma engenharia didática, em ambiente de geometria dinâmica, que favorece a ascensão dos alunos em patamar de conhecimento — de empírico a hipotético-dedutivo. Toma-se como referencial a teoria piagetiana, bem como a teoria da situação didática em matemática desenvolvida pela escola francesa. A engenharia se desenrola em três níveis: no primeiro, o propósito é a compreensão do significado e da necessidade de demonstração por via de construções geométricas; no segundo nível, pretende-se o desenvolvimento das primeiras habilidades na produção de demonstrações; e, no terceiro, os problemas propostos ao alunos exigem mais de seus funcionamentos cognitivos no tratamento adequado de uma figura geométrica — trata-se das extensões de desenho e concomitantes apreensões operativas responsáveis pela identificação de subconfigurações geométricas que dão suporte à argumentação dedutiva. Análise a posteriori do desenrolar dos trabalhos dos alunos confirma as expectativas anunciadas na análise a priori apresentada na fase de concepção da situação didática cuja implementação é proposta: o progresso dos alunos na construção de conhecimento em geometria, como modelo matemático, foi expressivo.
|
2 |
Os ambientes de geometria dinâmica e o pensamento hipotético-dedutivoGravina, Maria Alice January 2001 (has links)
O processo de demonstração é axial na construção do conhecimento matemático. Na geometria euclidiana, ele é um dos aspectos que apresenta grandes obstáculos aos alunos. Uma das dificuldades aparece na transição, necessária, entre o conhecimento de natureza empírica, já adquirido, e aquele a ser construído: a geometria euclidiana enquanto modelo teórico, organizado em axiomas, teoremas e demonstrações. Os recursos informáticos hoje disponíveis provocam a busca de estratégias pedagógicas favoráveis à construção deste conhecimento. Entender as suas potencialidades torna-se um objeto de investigação: o que acontece com os processos cognitivos quando ao sujeito em interação com a máquina é possibilitada a concretização de seus construtos e ações mentais, e quando, mediante realimentação imediata, ele é levado a novas reelaborações e construções mentais? E como tais processos concorrem para um novo conhecimento? Esta tese propõe uma engenharia didática, em ambiente de geometria dinâmica, que favorece a ascensão dos alunos em patamar de conhecimento — de empírico a hipotético-dedutivo. Toma-se como referencial a teoria piagetiana, bem como a teoria da situação didática em matemática desenvolvida pela escola francesa. A engenharia se desenrola em três níveis: no primeiro, o propósito é a compreensão do significado e da necessidade de demonstração por via de construções geométricas; no segundo nível, pretende-se o desenvolvimento das primeiras habilidades na produção de demonstrações; e, no terceiro, os problemas propostos ao alunos exigem mais de seus funcionamentos cognitivos no tratamento adequado de uma figura geométrica — trata-se das extensões de desenho e concomitantes apreensões operativas responsáveis pela identificação de subconfigurações geométricas que dão suporte à argumentação dedutiva. Análise a posteriori do desenrolar dos trabalhos dos alunos confirma as expectativas anunciadas na análise a priori apresentada na fase de concepção da situação didática cuja implementação é proposta: o progresso dos alunos na construção de conhecimento em geometria, como modelo matemático, foi expressivo.
|
3 |
Os ambientes de geometria dinâmica e o pensamento hipotético-dedutivoGravina, Maria Alice January 2001 (has links)
O processo de demonstração é axial na construção do conhecimento matemático. Na geometria euclidiana, ele é um dos aspectos que apresenta grandes obstáculos aos alunos. Uma das dificuldades aparece na transição, necessária, entre o conhecimento de natureza empírica, já adquirido, e aquele a ser construído: a geometria euclidiana enquanto modelo teórico, organizado em axiomas, teoremas e demonstrações. Os recursos informáticos hoje disponíveis provocam a busca de estratégias pedagógicas favoráveis à construção deste conhecimento. Entender as suas potencialidades torna-se um objeto de investigação: o que acontece com os processos cognitivos quando ao sujeito em interação com a máquina é possibilitada a concretização de seus construtos e ações mentais, e quando, mediante realimentação imediata, ele é levado a novas reelaborações e construções mentais? E como tais processos concorrem para um novo conhecimento? Esta tese propõe uma engenharia didática, em ambiente de geometria dinâmica, que favorece a ascensão dos alunos em patamar de conhecimento — de empírico a hipotético-dedutivo. Toma-se como referencial a teoria piagetiana, bem como a teoria da situação didática em matemática desenvolvida pela escola francesa. A engenharia se desenrola em três níveis: no primeiro, o propósito é a compreensão do significado e da necessidade de demonstração por via de construções geométricas; no segundo nível, pretende-se o desenvolvimento das primeiras habilidades na produção de demonstrações; e, no terceiro, os problemas propostos ao alunos exigem mais de seus funcionamentos cognitivos no tratamento adequado de uma figura geométrica — trata-se das extensões de desenho e concomitantes apreensões operativas responsáveis pela identificação de subconfigurações geométricas que dão suporte à argumentação dedutiva. Análise a posteriori do desenrolar dos trabalhos dos alunos confirma as expectativas anunciadas na análise a priori apresentada na fase de concepção da situação didática cuja implementação é proposta: o progresso dos alunos na construção de conhecimento em geometria, como modelo matemático, foi expressivo.
|
Page generated in 0.0958 seconds