• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 128
  • 116
  • 25
  • 21
  • 11
  • 9
  • 8
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 391
  • 93
  • 91
  • 62
  • 62
  • 62
  • 56
  • 41
  • 34
  • 29
  • 28
  • 27
  • 27
  • 25
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Formulace liposomů obsahujících imiquimod v přítomnosti dendrimerů / Formulation of Imiquimod loaded liposomes in the presence of dendrimers

Štěpničková, Tereza January 2021 (has links)
Charles University, Faculty of Pharmacy in Hradec Králové Department of Pharmaceutical Technology Supervisor: Dr. Georgios Paraskevopoulos, Ph.D. Consultant: Eleni Panoutsopoulou Author: Tereza Štěpničková Title of the thesis: Formulation of Imiquimod loaded liposomes in the presence of dendrimers Dendritic molecules, as highly branched polymers, are very attractive nanosystems for broad biomedical applications. Their specific properties include the ability to increase transdermal permeation of active ingredients as well as the ability to increase the water solubility of poorly soluble drugs. The main purpose of this thesis was the utilization of dendrimers to raise the concentration of the chemoterapeutic drug imiquimod inside liposomal formulations. Solutions of dendritic molecules zero, first, second and third generation were prepared, each at concentrations of 5 mg/ml and 10 mg/ml. These were subsequently used for the hydration of thin film lipid during the preparation of liposomes with the encapsulated drug. Two methods of the incorporation of imiquimod to liposomes were used. The first method represented insertion of the drug to lipids, the second was dissolution of the drug in the dendrimer solution. The concentration of encapsulated imiquimod, including the encapsulation efficacy, was...
2

Hydrogen and tritium kinetics in fusion reactor materials

Serra, Emanuele January 1996 (has links)
No description available.
3

Physicochemical aspects of enhanced skin permeation of cationic drugs

Green, P. G. January 1988 (has links)
No description available.
4

Pharmazeutisch-technologische Untersuchungen zur Permeation von Metronidazol durch Polymerfilme mit 8 Tabellen

Bergmann, Carina Verena January 2008 (has links)
Zugl.: Münster (Westfalen), Univ., Diss., 2008
5

Herstellung von monodispersen Polydimethylsiloxan-Netzwerken und Charakterisierung der Mikrostruktur und der Permeationseigenschaften

Pop, Claudius. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2006--Würzburg.
6

Large-scale Purification of proteins by gel permeation chromatography

Knight, James Rockwood, January 1970 (has links)
Thesis (Ph. D.)--University of Wisconsin--Madison, 1970. / Typescript. Vita. eContent provider-neutral record in process. Description based on print version record. Includes bibliographical references.
7

Physical and numerical experiments of flow and transport in heterogeneous fractured media: single fracture flow at high Reynolds numbers, and reactive particle transport

Spiller, Martin Werner January 2004 (has links) (PDF)
Aachen, Techn. Hochsch., Diss., 2004
8

Nové polyamidoaminodendrimery s ethylendiaminovým jádrem a aminoskupinami na periferii: Syntéza a potenciální využití při (trans)dermálním přenosu léčiv / Novel amino-decorated polyamidoamine dendrimers with ethylenediamine core: Synthesis and potential application in (trans)dermal drug delivery

Langerová, Martina January 2018 (has links)
Dendrimers are characterized as synthetic, spherical macromolecules with tree- like branched structures. Their well-controlled sizes (3 - 10 nm), ease of functionalization, high water solubility, well-defined chemical structure, and biocompatibility make these nanomaterials attractive for a wide spectrum of promising biomedical applications. Peptide dendrimers and polyamidoamine (PAMAM) dendrimers have been used to date as effective transdermal or topical drug delivery systems, with the latest in a much greater extent. The structural characteristics of the aforementioned molecules guided us to design a novel repeating unit for dendrimers (monomer) possessing amino branching point and able to afford generation expanding through repeating amide bonds. The novel monomer, after appropriate modifications, was used to develop lower generations of polyamidoamino dendritic structures having amide groups and amino-branching points in their interior. The new dendrimers were isolated and fully characterized by typical spectroscopic technics. The final molecules will be used in human skin permeation experiments and will be evaluated for their effect on skin permeability.
9

Roll-to-roll deposition of highly flexible organic-inorganic barrier layers for printed electronics and photovoltaics

Tobin, Vincent January 2018 (has links)
This thesis investigates how to improve transparent flexible water vapour barriers by understanding how water permeates through them. The barriers consisted of a reactively sputtered aluminium oxide coating on an industrial-grade polypropylene substrate. Some also incorporated a di-acrylate smoothing layer. Key deposition conditions were studied and optimised for permeation and visible-light transparency: sputtering power, thickness & sequential deposition rate. One of the main deposition conditions corresponded to increasing coating nitrogen content in order to induce barrier-water interaction. The final investigation consisted of including acrylate layers in different barrier stacking combinations. It was found that thin, high sputter power coatings formed the best barriers to permeation. This was due to denser packing of the oxide and the inclusion of fewer macro-defects (large defects allowing unhindered permeation) and nano-defects (defects small enough to cause the permeant to interact with the coating). No clear benefit to permeation was found from the inclusion of nitrogen, but refractive index was seen to increase and the oxynitride coatings mechanically failed at a greater force than the oxides. This case illustrated the importance of considering the role of permeation through nano-defects: although a high activation energy was achieved for the nitrogen containing films, possibly suggesting greater interaction between the water vapour and the barrier, the amount of permeation was not reduced as the nitrogen gave rise to increased permeation due to nano-defects, thus changing the processing and chemistry can affect both the macro-defect and nano-defect permeation. Smoothing layers were found to reduce the permeation rate by covering large substrate features, thus allowing rough substrates to be used even for high barriers. Although a coating of acrylate on top of a barrier oxide showed no improvement, a 1-2-1-2 stack of smoothing layer (1) and oxide (2) was found to exhibit a large delay in the onset of permeation.
10

Pure- and Mixed-Gas Transport Study of Nafion® and Its Fe3+-Substituted Derivative for Membrane-Based Natural Gas Applications

Mukaddam, Mohsin Ahmed 26 May 2016 (has links)
The focus of this research project was to develop a fundamental understanding of the structure-gas transport property relationship in Nafion® to investigate its potential use as a gas separation membrane material for natural gas (NG) applications including carbon dioxide removal from NG, helium recovery, higher-hydrocarbon removal, and nitrogen separation from methane. Separation processes account for ~45% of all energy used in chemical plants and petroleum refineries. As the drive for energy savings and sustainability intensifies, more efficient separation technology becomes increasingly important. Saudi Arabia ranks among the world’s top 5 NG producers. Commercial hydrocarbon-based glassy polymers often lose their gas separation properties in the presence of condensable, highly sorbing NG components such as CO2, ethane, propane, n-butane, and C5+ hydrocarbons. This deterioration in gas separation performance results from penetrant-induced dilation and plasticization of the polymer matrix, leading to significant methane and higher hydrocarbon losses. Polymers that have intrinsically low affinity to high-solubility NG components may be less susceptible to plasticization and therefore offer better performance under actual field conditions. By virtue of their strong carbon-fluorine bonds and chemical inertness, perfluoropolymers exhibit very low affinity for hydrocarbon gases. Nafion®, the prototypical perfluoro-sulfonated ionomer, comprising hydrophilic sulfonate groups phase-separated from a hydrophobic perfluorocarbon matrix, has demonstrated interesting permeability and selectivity relationships for gas pairs relevant to NG applications. Gas transport properties of Nafion® indicated gas solubility behavior similar to rubbery polymers but with sieving properties more commonly observed in low free volume glassy polymers. Nafion® demonstrated very low solubility for CO2 and hydrocarbon gases; the trend-line slope of solubility versus penetrant condensability in Nafion® was almost 2.5 times lower than that of typical hydrocarbon polymers, highlighting Nafion’s® effectiveness in resisting high-solubility induced plasticization. Additionally, Nafion® showed extraordinarily high permselectivities between small gases (He, H2, CO2) and large hydrocarbon gases (C1+): He/CH4 = 445, He/C3H8 = 7400, CO2/CH4 = 28, CO2/C3H8 = 460, H2/CH4 = 84 and H2/C3H8 = 1400 owing to its tightly packed chain domains. These high selectivities could potentially be harnessed for helium recovery and CO2 removal in natural gas applications, and hydrogen recovery from refinery gas streams. Pressure-dependent pure- and mixed-gas permeabilities in Nafion® were determined at 35 °C. Nafion® demonstrated two divergent pressure-dependent permeability phenomena: gas compression and plasticization. In pure-gas experiments, the permeability of the permanent gases H2, O2, N2 and CH4 decreased with increasing pressure due to polymer compression, whereas the permeability of the more condensable gases CO2, C2H6 and C3H8 increased dramatically due to solubility-induced plasticization. Binary CO2/CH4 (50:50) mixed-gas experiments showed reduced performance with up to 2-fold increases in CH4 permeability from 0.075 to 0.127 Barrer, and a 45% drop in selectivity (from 26 to 14), between 2 and 36 atm total pressure as a result of CO2-induced plasticization. At a typical NG CO2 partial pressure of 10 atm, Nafion® exhibited 24% lower CO2/CH4 selectivity of 19, with a 4-fold lower CO2 permeability of 1.8 Barrer relative to a commercial cellulose acetate (CA) membrane. Ternary CO2/CH4/C3H8 (30:50:20) experiments quantified the effect of CO2 and C3H8 plasticization. The presence of C3H8 reduced CO2 permeability further due to a competitive sorption effect causing a 31% reduction in CO2/CH4 selectivity, relative to its pure-gas value of 29, at 16 atm total feed pressure. The strong cation-exchanging sulfonate groups in Nafion® provided an opportunity to tailor the material properties by incorporating metal ions through a simple ion-exchange process. Nafion® neutralized with Fe3+ was investigated as a potential approach to mitigate CO2-plasticization. XRD results demonstrated an increase in crystallinity from 9% in Nafion H+ to 23% in Nafion Fe3+; however, no significant changes in the average inter chain spacing was observed. Raman and FT-IR technique qualitatively measured the strength of the ionic bond between Fe3+ cation and sulfonate anion. The strong crosslinking effect in Fe3+-cation-exchanged membrane demonstrated substantial increase in permselectivity: N2/CH4 selectivity increased by 39% (from 2.9 to 4.0) and CO2/CH4 selectivity increased by 25% (from 28 to 35). Binary CO2/CH4 (50:50) mixed-gas experiments at total feed pressures up to 30 atm quantified the effect of CO2 plasticization on the CO2/CH4 separation performance. Nafion® Fe3+ demonstrated better resistivity to plasticization enduring approximately 30% CH4 permeability increases from 0.033 Barrer at 2 atm to 0.043 Barrer at 15 atm CO2 partial pressure. At 10 atm CO2 partial pressure, CO2/CH4 selectivity in Nafion® Fe3+ decreased by 28% to 28 from its pure-gas value of 39, which was a significant improvement compared to Nafion® H+ membrane that decreased by 42% to 19 from its pure-gas value of 32.

Page generated in 0.1105 seconds