1 |
Otimização das operações de transferência e estocagem em rede de dutosBoschetto, Suelen Neves 04 February 2011 (has links)
CAPES; ANP / Este trabalho apresenta o desenvolvimento de estruturas de otimização para auxílio na tomada de decisão de atividades de planejamento e scheduling em dutos. Dois problemas são estudados: (i) O primeiro sistema envolve um duto que interliga uma refinaria até um parque de tancagem operando o transporte de diversos produtos. Visto que a resolução de todo o problema em um único modelo de otimização tornou-se inviável devido a complexidade computacional, uma abordagem de solução alternativa é proposta para a obtenção do scheduling do duto, utilizando apenas modelos PLIM (Programação Linear Inteira Mista). O primeiro modelo proposto obtém a sequência de envio dos produtos e seus respectivos volumes. Fixando-se essas variáveis, o segundo modelo PLIM, já presente na literatura, é capaz de obter o scheduling final do duto em poucos segundos. Além disso, a qualidade da solução obtida através do sequenciamento PLIM mostrou-se superior ao sequenciamento heurístico previamente apresentado na literatura; (ii) O segundo sistema é composto por uma rede com 30 dutos que interliga diversas áreas incluindo 4 refinarias, 2 terminais portuários, 2 clientes finais e 6 terminais de distribuição que recebem ou enviam diversos produtos derivados de petróleo. A rede em estudo possui características particulares que devem ser tratadas como, por exemplo, restrições locais, pulmão, reversão de fluxo, horossazonalidade e troca de turno dos operadores. Além disso, os dutos são compartilhados por diferentes produtos que utilizam rotas distintas. Dessa forma, paradas de bombeio devem ser avaliadas. Considerando-se que a complexidade da rede de dutos é sensivelmente maior que a realização do scheduling de um único duto, a decomposição desse problema se torna imprescindível. Detalhes do scheduling da rede devem ser obtidos, incluindo sequência de bombeamento em cada nó, volume das bateladas, restrições de tancagem e distribuição no tempo, sempre respeitando uma série de restrições operacionais. Dessa forma, a carga computacional para a determinação de um scheduling de curto prazo (short-term scheduling) com o cenário considerado é relevante. São propostos três modelos PLIM para esse problema: modelo de planejamento, modelo de alocação e sequenciamento e, finalmente, o modelo de temporização. A saída de um modelo PLIM é utilizada como entrada para outras estruturas e/ou modelos PLIM que são utilizados de forma hierárquica para a obtenção da solução desejada. Muitas análises foram realizadas por intermédio das soluções obtidas, que são apresentadas em tempo computacionalmente reduzido para cenários da indústria petrolífera. / This work addresses the problem of developing optimization structurres to aid the operational decision-making of planning and scheduling activities in real-world pipelines. Two problems are studed: (i) The first one contemplates a pipeline connecting a refinery and a depot. The pipeline transports various products. An alternative solution approach is proposed to obtain the pipeline scheduling, using only MILP (Mixed Integer Linear Programming) models. Since the resolution of the entire problem in a unique optimization model became too hard due to the high computational complexity, the problem decomposition is developed. The first proposed model provides the punping product-sequence and its volume, respectively. Fixing these variables, the MILP model is able to obtain the final scheduling of the pipeline in few seconds. The quality of the solution obtained by the MILP sequencing model is better than a previous heuristic sequencing published. (ii) The second system is composed by a network with 30 pipelins that connect different areas including 4 refineries, 2 harbors, 2 final clients, and 6 distribution terminals. They receive or send many oil derivatives. The studied pipeline network has particular features to be processed as, for instance, local constraints, surge tank operation, flow reverse operational, seasonal costs, and work shifts. Also, the pipelines are shared by different products that use different routes. In this way, pumping stoppages should be evaluated. Considering that the pipeline network complexity is higher than the unique pipeline scheduling procedure, the problem decomposition becomes essential. Scheduling details must be given, including pumping sequence in each node, volume of batches, tankage constraints and timing issues, while always respecting a series of operational constraints. Moreover, the computacional burden to determine a a short-term scheduling for the considered scenario is a difficult task. Three MILP models are proposed to address this problem: planning model, allocation and sequencing model and,finally, the timing model. The output of a model is used as input to other structures and/or MILP models. These models are managed in a hierarchical manner to obtain the desired solution. Many insights have been derived from the obtained solutions, which are given in a reduced computational time for oil industrial-size scenarios.
|
2 |
Otimização das operações de transferência e estocagem em rede de dutosBoschetto, Suelen Neves 04 February 2011 (has links)
CAPES; ANP / Este trabalho apresenta o desenvolvimento de estruturas de otimização para auxílio na tomada de decisão de atividades de planejamento e scheduling em dutos. Dois problemas são estudados: (i) O primeiro sistema envolve um duto que interliga uma refinaria até um parque de tancagem operando o transporte de diversos produtos. Visto que a resolução de todo o problema em um único modelo de otimização tornou-se inviável devido a complexidade computacional, uma abordagem de solução alternativa é proposta para a obtenção do scheduling do duto, utilizando apenas modelos PLIM (Programação Linear Inteira Mista). O primeiro modelo proposto obtém a sequência de envio dos produtos e seus respectivos volumes. Fixando-se essas variáveis, o segundo modelo PLIM, já presente na literatura, é capaz de obter o scheduling final do duto em poucos segundos. Além disso, a qualidade da solução obtida através do sequenciamento PLIM mostrou-se superior ao sequenciamento heurístico previamente apresentado na literatura; (ii) O segundo sistema é composto por uma rede com 30 dutos que interliga diversas áreas incluindo 4 refinarias, 2 terminais portuários, 2 clientes finais e 6 terminais de distribuição que recebem ou enviam diversos produtos derivados de petróleo. A rede em estudo possui características particulares que devem ser tratadas como, por exemplo, restrições locais, pulmão, reversão de fluxo, horossazonalidade e troca de turno dos operadores. Além disso, os dutos são compartilhados por diferentes produtos que utilizam rotas distintas. Dessa forma, paradas de bombeio devem ser avaliadas. Considerando-se que a complexidade da rede de dutos é sensivelmente maior que a realização do scheduling de um único duto, a decomposição desse problema se torna imprescindível. Detalhes do scheduling da rede devem ser obtidos, incluindo sequência de bombeamento em cada nó, volume das bateladas, restrições de tancagem e distribuição no tempo, sempre respeitando uma série de restrições operacionais. Dessa forma, a carga computacional para a determinação de um scheduling de curto prazo (short-term scheduling) com o cenário considerado é relevante. São propostos três modelos PLIM para esse problema: modelo de planejamento, modelo de alocação e sequenciamento e, finalmente, o modelo de temporização. A saída de um modelo PLIM é utilizada como entrada para outras estruturas e/ou modelos PLIM que são utilizados de forma hierárquica para a obtenção da solução desejada. Muitas análises foram realizadas por intermédio das soluções obtidas, que são apresentadas em tempo computacionalmente reduzido para cenários da indústria petrolífera. / This work addresses the problem of developing optimization structurres to aid the operational decision-making of planning and scheduling activities in real-world pipelines. Two problems are studed: (i) The first one contemplates a pipeline connecting a refinery and a depot. The pipeline transports various products. An alternative solution approach is proposed to obtain the pipeline scheduling, using only MILP (Mixed Integer Linear Programming) models. Since the resolution of the entire problem in a unique optimization model became too hard due to the high computational complexity, the problem decomposition is developed. The first proposed model provides the punping product-sequence and its volume, respectively. Fixing these variables, the MILP model is able to obtain the final scheduling of the pipeline in few seconds. The quality of the solution obtained by the MILP sequencing model is better than a previous heuristic sequencing published. (ii) The second system is composed by a network with 30 pipelins that connect different areas including 4 refineries, 2 harbors, 2 final clients, and 6 distribution terminals. They receive or send many oil derivatives. The studied pipeline network has particular features to be processed as, for instance, local constraints, surge tank operation, flow reverse operational, seasonal costs, and work shifts. Also, the pipelines are shared by different products that use different routes. In this way, pumping stoppages should be evaluated. Considering that the pipeline network complexity is higher than the unique pipeline scheduling procedure, the problem decomposition becomes essential. Scheduling details must be given, including pumping sequence in each node, volume of batches, tankage constraints and timing issues, while always respecting a series of operational constraints. Moreover, the computacional burden to determine a a short-term scheduling for the considered scenario is a difficult task. Three MILP models are proposed to address this problem: planning model, allocation and sequencing model and,finally, the timing model. The output of a model is used as input to other structures and/or MILP models. These models are managed in a hierarchical manner to obtain the desired solution. Many insights have been derived from the obtained solutions, which are given in a reduced computational time for oil industrial-size scenarios.
|
Page generated in 0.1101 seconds