• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modulation of growth and gene transcription of metabolic routes for nitrogen and phytohormones in Polypogon australis plants, mediated by the supernatant of a cyanobacterial culture

Pontigo Gallardo, Darlyng Rossio 05 July 2024 (has links)
Überstände von Cyanobakterien sind ein vielversprechendes Produkt zur Förderung des Pflanzenwachstums, da sie alle Vorteile der freigesetzten bioaktiven Verbindungen, wie z. B. Phytohormone, enthalten, ohne die Zwänge der mikrobiellen Inokulationen. Es ist jedoch nur wenig darüber bekannt, wie Cyanobakterien die Reaktion der Pflanzen auf molekularer Ebene modulieren könnten. In dieser Studie wurde das in Chile heimische Gras Polypogon australis als Modell verwendet, um die Wirkung von Überständen aus Kulturen von sieben autochthonen Bodencyanobakterien zu untersuchen. Von diesen zeigten die Überstände der Kulturen von Trichormus sp. die beste wachstumsfördernde Wirkung auf P. australis. Die ICP-MS-Analyse ergab, dass die Überstände von Trichormus sp. eine ähnliche Nährstoffzusammensetzung aufwiesen wie das für das Wachstum der Cyanobakterien verwendete Medium BG-11, mit Ausnahme der Elemente P und Mn, die in der späten exponentiellen Phase der Kulturen verarmt waren. Dann wurden Überstände von Trichormus sp.-Kulturen, die in der späten exponentiellen Phase gesammelt wurden und die eine Menge von 32,7 pmol trans-Zeatin pro mg Chl-a enthielten, zur Bewertung der Reaktion von P. australis auf transkriptioneller Ebene verwendet. Ein BG-11-Medium, das frei von P und Mn war, wurde als Kontrolle verwendet. Ganzes Pflanzengewebe wurde 3 Stunden nach der Behandlung entnommen und für eine RNA-seq-Analyse verwendet. Die Ergebnisse zeigten, dass die Überstände von Trichormus sp. die Pflanzenreaktion hauptsächlich über die N- und Phytohormonwege modulierten, die in engem Zusammenhang mit dem C- und Lipidstoffwechsel stehen. Die behandelten Pflanzen wiesen 4 und 8 Tage nach der Anwendung größere Triebe auf als die Kontrollpflanzen, aber es wurden keine Unterschiede bei der Wurzellänge festgestellt. Dieser Phänotyp lässt sich durch die Induktion von Genen für die Gibberellin-Biosynthese in P. australis erklären, die durch andere Hormone wie Auxine, Brassinosteroide und Ethylen unterstützt wird. Andererseits wurde in mit P. australis behandelten Pflanzen eine induzierte systemische Resistenzreaktion beobachtet, die hauptsächlich durch einen Ethylen-Jasmonat-Crosstalk vermittelt wurde. Diese Arbeit unterstützt die Verwendung von Überständen als eine gute Option zur Förderung des Pflanzenwachstums.:Table of content Preliminary Page Resumen i Abstract ii Übersetzung iii DECLARATION ix 1. Introduction 1 1.1. Plant-growth promoting microorganisms 1 1.2. Soil cyanobacteria 2 1.3. Physiology of soil cyanobacteria 2 1.4. Cyanobacterial plant growth-promoting molecules 4 1.5. Plant response to bioactive compounds 6 1.6. Cyanobacterial supernatants 9 1.7. Polypogon australis as a plant study model 11 2. Methodology 13 2.1. Obtention of the cyanobacterial cultures 13 2.2. Supernatant collection from the cyanobacterial cultures 14 2.3. Cyanobacterial biomass quantification 15 2.3.1. Chlorophyll-a content 15 2.3.2. Biomass dry weight 15 2.3.3. Determination of the growth phases 15 2.4. Chemical characterization of the supernatants 16 2.4.1. Nitrate content 16 2.4.2. Total element content 16 2.4.3. Zeatin content 16 2.5. Preparation of the modified BG-11 medium (BG-11M medium) 17 2.6. Bioassays with cyanobacterial supernatants 18 2.6.1. Effect of supernatants of the 25 mL cultures on P. australis germination 18 2.6.2. Effect of supernatants of the 25 mL cultures on P. australis plants 18 2.6.3. Effect of supernatants of the 2,400 mL cultures on P. australis plants 19 2.7. Statistical analysis 19 2.8. Determination of transcriptional changes in P. australis. 20 2.8.1. Plant treatments and tissue collection 20 2.8.2. Total RNA extraction from plant tissue 20 2.8.3. DNA removal 20 2.8.4. mRNA sequencing, de novo assembly, and differential expression analysis 21 2.8.5. Contig annotation and functional classification 22 3. Results 24 3.1. Trichormus sp. cultures produce the highest biomass content 24 3.2. Trichormus sp. cultures have a low P content 25 3.3. Trichormus sp. supernatants have the best growth-promoting effect on the growth of P. australis 25 3.4. Supernatant nutrient content of Trichormus sp. cultures change through the growth phases 27 3.5. Supernatants used in the transcriptomic assay and BG-11M medium have a lower nutrient content than BG-11 medium 30 3.6. Trichormus sp. supernatants promote the growth of P. australis to a greater extent than the BG-11M medium 32 3.7. Trichormus sp. supernatants contain zeatin 33 3.8. Trichormus sp. supernatants modulated more P. australis genes than the BG-11M medium 34 3.9. Trichormus sp. supernatants regulate the gene expression of growth and defense responses in P. australis 37 4. Discussion 57 4.1. The plant-growth promoting effect of Thrichormus sp. supernatants 57 4.2. The role of P and Mn in the growth-promoting effect of Trichormus sp. supernatants 58 4.3. Modulation of P. australis N-metabolism by Trichormus sp. supernatants 59 4.4. P. australis nitrogen and carbon metabolism in response to Trichormus supernatants 63 4.5. P. australis phytohormone-metabolism modulated by Trichormus supernatants 64 4.6. The role of lipid metabolism in the response to Trichormus supernatants 67 4.7. P. australis defense response triggered by Trichormus supernatants 68 4.8. Phytohormone crosstalk and defense response in P. australis treated with Trichormus sp. supernatants 71 4.9. Perspectives and challenges for the biotechnological use of Trichormus sp. supernatants 73 5. Conclusion 76 Bibliographic references 77 Annexes 116 / Cyanobacterial supernatants are a promising plant growth-promoting product since they contain all the advantages of the released bioactive compounds, such as phytohormones, without the constraints of microbial inoculations. However, little is known about how cyanobacteria could modulate the plant response at a molecular level. In this research, the Chilean native grass, Polypogon australis, was used as a model for assaying the effect of supernatants obtained from cultures of seven autochthonous soil cyanobacteria. Of them, supernatants of Trichormus sp. cultures showed the best growth-promoting effects on P. australis. Analysis by ICP-MS showed that Trichormus sp. supernatants had a similar nutrient composition to the medium used for the cyanobacteria growth, BG-11, except for the elements P and Mn, which were depleted when the late exponential phase of the cultures was reached. Then, supernatants of Trichormus sp. cultures collected in the late exponential phase, which contained an amount of 32.7 pmol of trans-zeatin per mg of Chl-a, were employed for evaluating the P. australis response at a transcriptional level. A BG-11 medium free of P and Mn was utilized as a control. Whole plant tissue was collected 3 h-post treatment and used for an RNA-seq analysis. Results showed that Trichormus sp. supernatants modulated the plant response mainly by the N and phytohormones pathways, in close relation with C and lipid metabolism. Treated plants showed larger shoots than control plants 4 and 8 days after application, but no differences were observed in root length. This phenotype can be explained by the induction in P. australis of gibberellin biosynthesis genes, supported by other hormones such as auxins, brassinosteroids, and ethylene. On the other hand, an induced systemic resistance response was observed in P. australis-treated plants, mostly mediated by an ethylene-jasmonate crosstalk. This work supports the use of supernatants as a good plant growth-promoting option.:Table of content Preliminary Page Resumen i Abstract ii Übersetzung iii DECLARATION ix 1. Introduction 1 1.1. Plant-growth promoting microorganisms 1 1.2. Soil cyanobacteria 2 1.3. Physiology of soil cyanobacteria 2 1.4. Cyanobacterial plant growth-promoting molecules 4 1.5. Plant response to bioactive compounds 6 1.6. Cyanobacterial supernatants 9 1.7. Polypogon australis as a plant study model 11 2. Methodology 13 2.1. Obtention of the cyanobacterial cultures 13 2.2. Supernatant collection from the cyanobacterial cultures 14 2.3. Cyanobacterial biomass quantification 15 2.3.1. Chlorophyll-a content 15 2.3.2. Biomass dry weight 15 2.3.3. Determination of the growth phases 15 2.4. Chemical characterization of the supernatants 16 2.4.1. Nitrate content 16 2.4.2. Total element content 16 2.4.3. Zeatin content 16 2.5. Preparation of the modified BG-11 medium (BG-11M medium) 17 2.6. Bioassays with cyanobacterial supernatants 18 2.6.1. Effect of supernatants of the 25 mL cultures on P. australis germination 18 2.6.2. Effect of supernatants of the 25 mL cultures on P. australis plants 18 2.6.3. Effect of supernatants of the 2,400 mL cultures on P. australis plants 19 2.7. Statistical analysis 19 2.8. Determination of transcriptional changes in P. australis. 20 2.8.1. Plant treatments and tissue collection 20 2.8.2. Total RNA extraction from plant tissue 20 2.8.3. DNA removal 20 2.8.4. mRNA sequencing, de novo assembly, and differential expression analysis 21 2.8.5. Contig annotation and functional classification 22 3. Results 24 3.1. Trichormus sp. cultures produce the highest biomass content 24 3.2. Trichormus sp. cultures have a low P content 25 3.3. Trichormus sp. supernatants have the best growth-promoting effect on the growth of P. australis 25 3.4. Supernatant nutrient content of Trichormus sp. cultures change through the growth phases 27 3.5. Supernatants used in the transcriptomic assay and BG-11M medium have a lower nutrient content than BG-11 medium 30 3.6. Trichormus sp. supernatants promote the growth of P. australis to a greater extent than the BG-11M medium 32 3.7. Trichormus sp. supernatants contain zeatin 33 3.8. Trichormus sp. supernatants modulated more P. australis genes than the BG-11M medium 34 3.9. Trichormus sp. supernatants regulate the gene expression of growth and defense responses in P. australis 37 4. Discussion 57 4.1. The plant-growth promoting effect of Thrichormus sp. supernatants 57 4.2. The role of P and Mn in the growth-promoting effect of Trichormus sp. supernatants 58 4.3. Modulation of P. australis N-metabolism by Trichormus sp. supernatants 59 4.4. P. australis nitrogen and carbon metabolism in response to Trichormus supernatants 63 4.5. P. australis phytohormone-metabolism modulated by Trichormus supernatants 64 4.6. The role of lipid metabolism in the response to Trichormus supernatants 67 4.7. P. australis defense response triggered by Trichormus supernatants 68 4.8. Phytohormone crosstalk and defense response in P. australis treated with Trichormus sp. supernatants 71 4.9. Perspectives and challenges for the biotechnological use of Trichormus sp. supernatants 73 5. Conclusion 76 Bibliographic references 77 Annexes 116 / Los sobrenadantes de cianobacterias son prometedores productos promotores del crecimiento vegetal, pues contienen todas las ventajas de los compuestos bioactivos liberados, como fitohormonas, sin las limitaciones de las inoculaciones microbianas. Lamentablemente, poco se sabe sobre cómo las cianobacterias modularían la respuesta de las plantas a nivel molecular. En esta investigación, se utilizó la gramínea nativa chilena Polypogon australis como modelo para evaluar el efecto de sobrenadantes de cultivos de siete cianobacterias autóctonas de suelo. Los sobrenadantes de Trichormus sp. mostraron mejores efectos promotores del crecimiento de P. australis. Análisis mediante ICP-MS evidenciaron que estos sobrenadantes tenían un contenido nutricional similar al medio de crecimiento de las cianobacterias, BG-11, excepto por los elementos P y Mn, que se agotaron al alcanzarse la fase exponencial tardía de los cultivos. Para evaluar la respuesta de P. australis a nivel transcripcional, se emplearon sobrenadantes colectados en fase exponencial tardía de cultivos de Trichormus sp., que contenían una cantidad de 32,7 pmol de trans-zeatina por mg de Chl-a. Un medio BG-11 libre de P y Mn se utilizó como control. Tres horas después del tratamiento se recogió tejido de plantas completas y se le hizo un análisis de RNA-seq. Como resultado, los sobrenadantes principalmente modularon las vías de N y fitohormonas de la planta, en estrecha relación con los metabolismos de C y lípidos. Las plantas tratadas mostraron brotes más grandes que las plantas control, 4 y 8 días después de la aplicación, pero no se observaron diferencias en la longitud radicular. Este fenotipo puede explicarse por la inducción de biosíntesis de giberelina, apoyada por otras hormonas como auxinas, brasinoesteroides y etileno. Además, se observó una inducción de resistencia sistémica en las plantas tratadas, mediada por una interacción etileno-jasmonatos. Este trabajo corrobora el uso de sobrenadantes como una buena opción para promover el crecimiento de las plantas.:Table of content Preliminary Page Resumen i Abstract ii Übersetzung iii DECLARATION ix 1. Introduction 1 1.1. Plant-growth promoting microorganisms 1 1.2. Soil cyanobacteria 2 1.3. Physiology of soil cyanobacteria 2 1.4. Cyanobacterial plant growth-promoting molecules 4 1.5. Plant response to bioactive compounds 6 1.6. Cyanobacterial supernatants 9 1.7. Polypogon australis as a plant study model 11 2. Methodology 13 2.1. Obtention of the cyanobacterial cultures 13 2.2. Supernatant collection from the cyanobacterial cultures 14 2.3. Cyanobacterial biomass quantification 15 2.3.1. Chlorophyll-a content 15 2.3.2. Biomass dry weight 15 2.3.3. Determination of the growth phases 15 2.4. Chemical characterization of the supernatants 16 2.4.1. Nitrate content 16 2.4.2. Total element content 16 2.4.3. Zeatin content 16 2.5. Preparation of the modified BG-11 medium (BG-11M medium) 17 2.6. Bioassays with cyanobacterial supernatants 18 2.6.1. Effect of supernatants of the 25 mL cultures on P. australis germination 18 2.6.2. Effect of supernatants of the 25 mL cultures on P. australis plants 18 2.6.3. Effect of supernatants of the 2,400 mL cultures on P. australis plants 19 2.7. Statistical analysis 19 2.8. Determination of transcriptional changes in P. australis. 20 2.8.1. Plant treatments and tissue collection 20 2.8.2. Total RNA extraction from plant tissue 20 2.8.3. DNA removal 20 2.8.4. mRNA sequencing, de novo assembly, and differential expression analysis 21 2.8.5. Contig annotation and functional classification 22 3. Results 24 3.1. Trichormus sp. cultures produce the highest biomass content 24 3.2. Trichormus sp. cultures have a low P content 25 3.3. Trichormus sp. supernatants have the best growth-promoting effect on the growth of P. australis 25 3.4. Supernatant nutrient content of Trichormus sp. cultures change through the growth phases 27 3.5. Supernatants used in the transcriptomic assay and BG-11M medium have a lower nutrient content than BG-11 medium 30 3.6. Trichormus sp. supernatants promote the growth of P. australis to a greater extent than the BG-11M medium 32 3.7. Trichormus sp. supernatants contain zeatin 33 3.8. Trichormus sp. supernatants modulated more P. australis genes than the BG-11M medium 34 3.9. Trichormus sp. supernatants regulate the gene expression of growth and defense responses in P. australis 37 4. Discussion 57 4.1. The plant-growth promoting effect of Thrichormus sp. supernatants 57 4.2. The role of P and Mn in the growth-promoting effect of Trichormus sp. supernatants 58 4.3. Modulation of P. australis N-metabolism by Trichormus sp. supernatants 59 4.4. P. australis nitrogen and carbon metabolism in response to Trichormus supernatants 63 4.5. P. australis phytohormone-metabolism modulated by Trichormus supernatants 64 4.6. The role of lipid metabolism in the response to Trichormus supernatants 67 4.7. P. australis defense response triggered by Trichormus supernatants 68 4.8. Phytohormone crosstalk and defense response in P. australis treated with Trichormus sp. supernatants 71 4.9. Perspectives and challenges for the biotechnological use of Trichormus sp. supernatants 73 5. Conclusion 76 Bibliographic references 77 Annexes 116

Page generated in 0.0561 seconds