Spelling suggestions: "subject:"phaseshift"" "subject:"phaseshifts""
131 |
Caractérisation des propriétés d’un matériau par radiométrie photothermique modulée / Characterization of the properties of a material by modulated photothermal radiometryPham Tu Quoc, Sang 05 December 2014 (has links)
L'objectif de nos études est d’appliquer la technique de radiométrie photothermique modulée, technique non intrusive et applicable à distance, pour d’une part, mesurer l'épaisseur et la diffusivité thermique d'une plaque, et d’autre part, caractériser une couche sur un substrat. Un modèle thermique du chauffage 3D a été développé avec prise en compte de l’échange thermique par convection dans le cas d'une plaque, et de la résistance thermique de l'interface dans le cas d'une couche sur un substrat. Une analyse de sensibilité des paramètres sur le déphasage et des études multiparamétriques ont été réalisées à l'aide d'un code de calcul développé sous Matlab. Des formules simples ont ainsi été déterminées pour mesurer l'épaisseur et la diffusivité thermique d'une plaque ainsi que le rapport des effusivités thermiques dans le cas d'une couche sur un substrat. Les formules établies pour les plaques ont été validées expérimentalement sur des plaques d’épaisseur variant de 100μm à 500μm pour différents métaux : inox 304L, nickel, titane, tungstène, molybdène, zinc et fer. L’incertitude de ces déterminations est inférieure à 10% pour l'épaisseur et inférieure à 15% pour la diffusivité thermique. La technique a ensuite été appliquée à des gaines de Zircaloy-4, qui représentent une application très intéressante dans le domaine du nucléaire : les résultats montrent que la présence de la couche d'oxyde, d’épaisseur quelques μm, n'a que très peu d’influence sur les déterminations de l'épaisseur et de la diffusivité thermique du Zircaloy-4. Le comportement du déphasage à hautes fréquences (> 1 kHz) ouvre de plus de nouvelles perspectives, avec la possibilité d’étendre le domaine d’application de la méthode aux couches semi-transparentes et aux couches très minces (inférieures au μm). / Modulated photothermal radiometry, a remote non-intrusive technique, was used to measure the thickness and the thermal diffusivity of a metal plate and to characterize a layer on a substrate. A thermal model of 3D heating was developed with considering the thermal exchange by convection for a plate and the thermal resistance of the interface for a layer on a substrate. The sensibility analysis and the multi-parameter studies on the phase shift were performed by the code developed with the Matlab software. Simple formulas were obtained to determine the thickness and the thermal diffusivity of a plate and the ratio of the thermal effusivities for a layer on a substrate. The obtained formulas were experimentally validated for 100 μm - 500 μm plate thickness of various metals (stainless steel 304L, nickel, titanium, tungsten, molybdenum, zinc and iron). The uncertainty of the measurements was lower than 10 % for thickness and lower than 15 % for thermal diffusivity determination. The same technique was applied in the study on Zircaloy-4 cladding that may be of particular interest for the nuclear industry. It was found that the presence of the oxide layer of some μm thickness had practically no effect on the thickness and the thermal diffusivity measurements of Zircaloy-4 cladding. However, the observed effect of a phase shift on high frequency (> 1kHz) may open new perspectives and widen the field of the method application for semi-transparent layers and for very thin layers (of less than μm thickness).
|
132 |
Etude des états liés et de diffusion par la théorie quantique des champs sur le cône de lumièreOropeza Rodriguez, Damian 26 November 2004 (has links) (PDF)
Cette thèse porte sur le calcul des états liés et de diffusion de systèmes à deux corps dans une formulation explicitement covariante de la dynamique sur le front de lumière. Nous traitons dans ce cadre deux particules scalaires en interaction à l'approximation "ladder" (modèle de Wick-Cutkosky massif). Les états liés sont calculés (onde S et P) par une décomposition angulaire du potentiel. Nous montrons que la restriction de cette décomposition à sa première composante suffit pour décrire correctement le système, ce qui revient à approximer le potentiel par sa moyenne sur toutes les directions du front de lumière. Ce résultat facilite le traitement des états de diffusion. Nous calculons donc des déphasages élastiques (onde S et P). Or notre potentiel relativiste prend en compte l'ouverture d'un canal inélastique au-delà du seuil de création. Nous calculons donc des déphasages correspondant à l'émision d'un boson, qui violent cependant l'unitarité de la matrice S. La prise en compte la self-énergie permet de résoudre ce problème comme nous montrons par un calcul perturbatif. L'ajout de la self-énergie permet d'obtenir des déphasages inélastique respectant l'unitarité de S. Nous montrons aussi que la self-énergie modifie considérablement les conditions d'existence d'états liés. Nous considérons aussi le cas des deux fermions en interaction par un échange scalaire ou pseudo-scalaire (état $J^\pi=0^+$). Les états liés sont traités par une décomposition angulaire, mais la propriété de moyenne n'apparaît pas pour le couplage pseudo-scalaire. Elle apparaît pour le couplage scalaire, ce qui nous permet de calculer des déphasages élastiques et inélastiques à l'approximation ladder. Abstract : This thesis concerns the two-body scattering and bound states in an explicitly covariant formulation of the light-front dynamics. We consider, in this framework, two scalar particles in interaction at the "ladder" approximation (massive Wick-Cutkosky model). S and P-waves bound states are calculated by an angular decomposition of the potential. We show that the first term of the decomposition gives already a very good description of the system, what is equivalent to take an averaged potential over the light-front directions. This results simplifies the treatment of the scattering states. We obtain the elastics phase shifts (S and P waves). Yet our relativistic potential take into account the first inelastic threshold, what corresponds to the one boson emission. These phase shifts do not respects the S-matrix unitarity. We show by a perturbative calculation that the addition of self-energy contributions permits to solve this problem. Adding this term, allows to obtain an inelastic phase-shift respecting S-matrix unitarity. We show also that the self-energy contribution strongly modifies the conditions of existence of a bound state. We consider also two fermions interacting by a scalar or pseudoscalar exchange ($J^\pi=0^+$ state). The bound states are calculated by the angular decomposition method, that works well here but fails in the pseudoscalar coupling. The average method is finally used to calculate the scattering states in the ladder approximation fo the scalar coupling.
|
133 |
Design av mikrovågsövergångar / Design of microwave connectionsPetersson, Björn January 2003 (has links)
<p>In this Master thesis, microwave connections between circuit boards are constructed. The primary frequency band is the X-band (8-12 GHz). The purpose of the connections is to enable a more simple and cheaper way of mounting the circuit boards inside a container. </p><p>The connections have been designed and evaluated, using different computer programs. A few prototypes have been built and measured. </p><p>The main goal of this Master thesis was to design a connection, that would be useful in practice. The connections should be easy to manufacture and have a good performance. They should also have a high tolerance for manufacturing errors. </p><p>The main part of this report contains descriptions of different designs. The designs are presented together with simulated and measured results. </p><p>The report contains designs based upon coplanar waveguides and a phase shifting technique. The result shows that designs that are using coplanar waveguides are good. The phase shifting technique has some limitations and need to be developed further.</p>
|
134 |
DPSK modulation format for optical communication using FBG demodulator / DPSK modulering för optisk kommunikation med demodulering av FBGJacobsson, Fredrik January 2004 (has links)
<p>The task of the project was to evaluate a differential phase shift keying demodulation technique by replacing a Mach-Zehnder interferometer receiver with an optical filter (Fiber Bragg Grating). Computer simulations were made with single optical transmission, multi channel systems and transmission with combined angle/intensity modulated optical signals. The simulations showed good results at both 10 and 40 Gbit/s. Laboratory experiments were made at 10 Gbit/s to verify the simulation results. It was found that the demodulation technique worked, but not with satisfactory experimental results. The work was performed at Eindhoven University of Technology, Holland, within the framework of the STOLAS project at the department of Electro-optical communication.</p>
|
135 |
Design av mikrovågsövergångar / Design of microwave connectionsPetersson, Björn January 2003 (has links)
In this Master thesis, microwave connections between circuit boards are constructed. The primary frequency band is the X-band (8-12 GHz). The purpose of the connections is to enable a more simple and cheaper way of mounting the circuit boards inside a container. The connections have been designed and evaluated, using different computer programs. A few prototypes have been built and measured. The main goal of this Master thesis was to design a connection, that would be useful in practice. The connections should be easy to manufacture and have a good performance. They should also have a high tolerance for manufacturing errors. The main part of this report contains descriptions of different designs. The designs are presented together with simulated and measured results. The report contains designs based upon coplanar waveguides and a phase shifting technique. The result shows that designs that are using coplanar waveguides are good. The phase shifting technique has some limitations and need to be developed further.
|
136 |
DPSK modulation format for optical communication using FBG demodulator / DPSK modulering för optisk kommunikation med demodulering av FBGJacobsson, Fredrik January 2004 (has links)
The task of the project was to evaluate a differential phase shift keying demodulation technique by replacing a Mach-Zehnder interferometer receiver with an optical filter (Fiber Bragg Grating). Computer simulations were made with single optical transmission, multi channel systems and transmission with combined angle/intensity modulated optical signals. The simulations showed good results at both 10 and 40 Gbit/s. Laboratory experiments were made at 10 Gbit/s to verify the simulation results. It was found that the demodulation technique worked, but not with satisfactory experimental results. The work was performed at Eindhoven University of Technology, Holland, within the framework of the STOLAS project at the department of Electro-optical communication.
|
137 |
Low Correlation Sequences Over AM-PSK And QAM ConstellationsAnand, M 04 1900 (has links)
Direct-Sequence Code Division Multiple Access (DS-CDMA), over the last few years, has become a popular technique and finds a place in many modern communication systems. The performance of this technique is closely linked to the signature (or spreading) sequences employed in the system. In the past, there have been many successful attempts by research groups to construct families of signature sequences that offer the potential gains promised by theoretical bounds. In this thesis, we present constructions of families of signature sequences over the AM-PSK and QAM alphabet with low correlation.
In this thesis, we construct a family of sequences over the 8-ary AM-PSK constella-
tion, Family AOpt(16) that is asymptotically optimal with respect to the Welch bound on maximum magnitude of correlation for complex sequences. The maximum magnitude of correlation for this family, θmax, is upper bounded by √N , where N is the period of the sequences. The 8-ary AM-PSK constellation is a subset of the 16-QAM constellation. We also construct two families of sequences over 16-QAM, Family A16A, and Family A16,B , with the maximum magnitude of correlation upper bounded by √2√N .
We construct a family, A(M 2), of sequences over the 2m+1-ary AM-PSK constellation of period N = 2r- 1 and family size (N + 1)/2m-1 . The 2m+1-ary AM-PSK constellation is a subset of the M 2-QAM constellation with M =2m . The maximum nontrivial normalized correlation parameter is bounded above by θmax < a √N where a ranges from
1.34 in the case of M 2 = 16 to √5 for large m. Apart from low correlation values, the family possesses several interesting and useful features. In Family A(M 2), users have the ability to transmit 2m bits of data per period of the spreading sequence. The sequences in Family A(M 2) are balanced; all points from the 2m+1-ary AM-PSK constellation occur approximately equally often in sequences of long period. The Euclidean distance between the signals assigned to a particular user in A(M 2), corresponding to different data symbols, is larger than the corresponding value for the case when 2m+1-PSK modulation and spreading is used. Perhaps most interestingly, Family A(M 2) permits users on the reverse link of a CDMA system to communicate asynchronously at varying data rates by switching between different QAM constellations.
Family A(M 2) is compatible with QPSK sequence families S(p) in the sense that the maximum correlation magnitude is increased only slightly if one adds sequences from (p) S(p)\ S(0) to Family A(M 2).
We also construct families of sequences over AM-PSK that tradeoff data rate per sequence period and θmax for a given family size.
We have extended the construction of sequences over AM-PSK constellation to construct sequences over the M 2-QAM constellation for M =2m . The QAM sequence families, Families (AM 2), have size, data rate and minimum squared Euclidean distance same as the corresponding AM-PSK construction but have higher values of θmax. Also included in the thesis are constructions for large families of sequences over the M 2-QAM alphabet.
|
138 |
"Phase-Correlation Based Displacemnt-Metrology" - Few InvestigationsDiwan, C Yogesh 07 1900 (has links) (PDF)
No description available.
|
139 |
Programmable and Tunable Circuits for Flexible RF Front EndsAhsan, Naveed January 2008 (has links)
Most of today’s microwave circuits are designed for specific function and specialneed. There is a growing trend to have flexible and reconfigurable circuits. Circuitsthat can be digitally programmed to achieve various functions based on specific needs. Realization of high frequency circuit blocks that can be dynamically reconfigured toachieve the desired performance seems to be challenging. However, with recentadvances in many areas of technology these demands can now be met. Two concepts have been investigated in this thesis. The initial part presents thefeasibility of a flexible and programmable circuit (PROMFA) that can be utilized formultifunctional systems operating at microwave frequencies. Design details andPROMFA implementation is presented. This concept is based on an array of genericcells, which consists of a matrix of analog building blocks that can be dynamicallyreconfigured. Either each matrix element can be programmed independently or severalelements can be programmed collectively to achieve a specific function. The PROMFA circuit can therefore realize more complex functions, such as filters oroscillators. Realization of a flexible RF circuit based on generic cells is a new concept.In order to validate the idea, a test chip has been fabricated in a 0.2μm GaAs process, ED02AH from OMMICTM. Simulated and measured results are presented along withsome key applications like implementation of a widely tunable band pass filter and anactive corporate feed network. The later part of the thesis covers the design and implementation of tunable andwideband highly linear LNAs that can be very useful for multistandard terminals suchas software defined radio (SDR). One of the key components in the design of a flexibleradio is low noise amplifier (LNA). Considering a multimode and multiband radiofront end, the LNA must provide adequate performance within a large frequency band.Optimization of LNA performance for a single frequency band is not suitable for thisapplication. There are two possible solutions for multiband and multimode radio frontends (a) Narrowband tunable LNAs (b) Wideband highly linear LNAs. A dual bandtunable LNA MMIC has been fabricated in 0.2μm GaAs process. A self tuningtechnique has also been proposed for the optimization of this LNA. This thesis alsopresents the design of a novel highly linear current mode LNA that can be used forwideband RF front ends for multistandard applications. Technology process for thiscircuit is 90nm CMOS.
|
140 |
Enhanced Distance Measuring Equipment Data Broadcast Design, Analysis, Implementation, and Flight-Test ValidationNaab-Levy, Adam O. January 2015 (has links)
No description available.
|
Page generated in 0.0513 seconds