• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 21
  • 5
  • 1
  • Tagged with
  • 60
  • 45
  • 26
  • 21
  • 21
  • 19
  • 18
  • 17
  • 16
  • 16
  • 14
  • 13
  • 13
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Design, synthesis and characterization of self-assembling conjugated polymers for use in organic electronic applications

Woody, Kathy Beckner 23 March 2011 (has links)
Conjugated polymers comprise some of the most promising materials for new technologies such as organic field effect transistors, solar light harvesting technology and sensing devices. In spite of tremendous research initiatives in materials chemistry, the potential to optimize device performance and develop new technologies is remarkable. Understanding relationships between the structure of conjugated polymers and their electronic properties is critical to improving device performance. The design and synthesis of new materials which self-organize into ordered nanostructures creates opportunities to establish relationships between electronic properties and morphology or molecular packing. This thesis details our progress in the development of synthetic routes which provide access to new classes of conjugated polymers that contain dissimilar side chains that segregate or dissimilar conjugated blocks which phase separate, and summarizes our initial attempts to characterize these materials. Poly(1,4-phenylene ethynylene)s (PPEs) have been used in a variety of organic electronic applications, most notably as fluorescent sensors. Using traditional synthetic methods, asymmetrically disubstituted PPEs have irregular placement of side chains on the conjugated backbone. Herein, we establish the first synthetic route to an asymmetrically substituted regioregular PPEs. The initial PPEs in this study have different lengths of alkoxy side chains, and both regioregular and regiorandom analogs are synthesized and characterized for comparison. The design of amphiphilic structures provides additional opportunities for side chains to influence the molecular packing and electronic properties of conjugated polymers. A new class of regioregular, amphiphilic PPEs has been prepared bearing alkoxy and semifluoroalkoxy side chains, which have a tendency to phase separate. Fully conjugated block copolymers can provide access to interesting new morphologies as a result of phase separation of the conjugated blocks. In particular, donor-acceptor block copolymers that phase separate into electron rich and electron poor domains may be advantageous in organic electronic devices such as bulk heterojunction solar cells, of which the performance relies on precise control of the interface between electron donating and accepting materials. The availability of donor-acceptor block copolymers is limited, largely due to the challenges associated with synthesizing these materials. In this thesis, two new synthetic routes to donor-acceptor block copolymers are established. These methods both utilize the catalyst transfer condensation polymerization, which proceeds by a chain growth mechanism. The first example entails the synthesis of a monofunctionalized, telechelic poly(3-alkylthiophene) which can be coupled to electron accepting polymers in a subsequent reaction. The other method describes the first example of a one-pot synthesis of a donor-acceptor diblock copolymer. The methods of synthesis are described, and characterization of the block copolymers is reported.
32

Conductive And Electrochromic Properties Of Poly(p-phenylene Vinylene)

Ozturk, Tugba 01 January 2005 (has links) (PDF)
P-xylene-bis(diethylsulphonium chloride) (PXBDC) monomer was synthesized by the reaction of &amp / #945 / ,&amp / #945 / -dichloro-p-xylene with tetrahydrothiophene or diethyl sulphide. Electrochemical behavior of this monomer (PXBDC) was examined by cyclic voltametry. Polymerization was achieved both by using electrochemical and chemical polymerization techniques. In the electrochemical technique, PPV was synthesized by constant potential electrolysis in acetonitrile-tetrabutylammonium tetrafluoroborate (TBAFB) solvent-electrolyte couple. The polymer obtained from the electrode surface was converted to the poly(p-phenylene vinylene) (PPV) by the thermal elimination reaction of diethyl sulphide and HCl. Also, PPV was doped via electrochemical doping with ClO4- dopant ion. The chemical structures were confirmed both by Nuclear Magnetic Resonance Spectroscopy (NMR) and Fourier Transform Infrared Spectroscopy (FTIR). The thermal behavior of chemically and electrochemically synthesized conducting polymers were investigated by Differential Scanning Calorimetry (DSC). Also, electrochromic and spectroelectrochemical properties of PPV was investigated by using UV-VIS spectrophotometer.
33

Síntese e caracterização de derivados do poli(fenileno-vinileno) com diferentes massas molares / Synthesis and characterization of poly(p-phenylene-vinylene) derivatives with different molar masses

Patrícia Bueno de Campos 26 September 2003 (has links)
Os polímeros com propriedades luminescentes, e mais especificamente, os eletroluminescentes, tem atraído muita atenção devido a sua possível aplicação em dispositivos ópticos e eletrônicos do tipo LEDs (light-emitting diodes). Grande parte das pesquisas realizadas no campo da eletroluminescência se baseia em estudos sobre poli (arilenos-vinilenos), como o poli-(p-fenileno vinileno), PPV, e seus derivados. No processo de polimerização de tais polímeros, a influência de algumas variáveis são importantes em suas propriedades finais. Este trabalho descreve a exploração da influência de diversas variáveis no processo de polimerização do derivado do PPV, o poli-(2-metoxi-5-hexiloxi-p-fenileno-vinileno) MH-PPV. Além disso, com o intuito de verificar a influência da presença de aditivos na massa molar dos polímeros foram realizadas polimerizações utilizando-se os aditivos 4-metoxifenol, cloreto de tercbutila e cloreto de benzila durante o processo de polimerização. Também foram realizados estudos sobre o modo de adição e temperatura de polimerização utilizando o aditivo cloreto de benziIa. Todos os produtos foram caracterizados por HPSEC (Cromatografia de Exclusão por Tamanho) para determinação das massas molares dos polímeros. Observou-se que a temperatura e a velocidade de adição da base no meio reacional são variáveis que influenciam significativamente no processo de polimerização e, conseqüentemente, na distribuição na massa molar dos polímeros. Foi constatado que o uso de aditivos no processo de polimerização previne a formação de géis; fornece polímeros com baixa massa molar, aumentando a solubilidade dos polímeros em solventes orgânicos como clorofórmio e THF. A análise térmica dos polímeros revelou que além da Tg em tomo de 160oC, todos os polímeros apresentaram uma transição em tomo de 75oC. Os espectros de absorção e emissão não foram afetados de forma significativa dentro dos valores de massas molares médias obtidas. Foi possível também obter uma relação entre os valores de massa molar obtidos por HPSEC e valores de viscosidade relativa, que pode ser utilizada para estimar valores de Mw através de medidas de tempo de escoamento / Electroluminescent polymers have been widely investigated due to its potential applications in optoelectronic devices such as polymer light-emitting diodes (PLEDs). Most of the polymers suitable for application in PLEDs are related to the poly(arylenes-vinylene) polymers, including the poly(p-phenylene-vinylene) (PPV) and its derivatives, which are of special interest. Such materials can exhibit significant differences on their final properties upon changes on specific synthesis parameters. In this work it is described the influence of three different additives, viz. 4-methoxyphenol, terc-butyl chloride and benzyl chloride, on the polymerization process of the derivative poly(2-methoxy-5-hexyloxy-p-phenylenevinylene) MHPPV. Size Exclusion Chromatography analyses revealed that the type and rate of incorporation of the additives to the polymerization reaction largely affects the molecular weight of the polymers. In addition, it was observed that the use of additives leads to the synthesis of low molecular weight polymers, increasing their solubilities in common organic solvents, eg. chloroform and tetrahydrofuran. The glass transition temperature (Tg) of the polymers was determined by differential scanning calorimetry (DSC) to be ca. 160oC. Interestingly, all the polymers presented an additional transition point at ca. 75oC. Neither the electronic absorption nor the emission spectra were affected by the differences on the molecular weight of the polymers. Finally, it was possible to establish correlations between the molecular weight analyses (from HPSEC) and viscosity experiments, which can be useful for Mw determination
34

Multifunctional Metallo-Supramolecular Matrials and Sensors

Burnworth, Mark Gross 14 March 2011 (has links)
No description available.
35

Folding of <i>ortho</i>-phenylene oligomers

Mathew, Sanyo 31 July 2014 (has links)
No description available.
36

Cyclopentadienone Conversions to Terephthalates and Cycloadditions of Alkynes and Azides

Bragg, Sarah E. 10 June 2011 (has links)
No description available.
37

Gas Transport in Proton Exchange Membranes for use in Fuel Cell Applications

James, Charles William Jr. 05 December 2007 (has links)
The objectives of this research were to study the gas transport properties of proton exchange membranes (PEM), namely disulfonated poly(arylene ether sulfone) (BPSH-35), post sulfonated diels-alder poly(phenylene) (SDAPP), and poly(perfluoro sulfonic acid) (Nafion). The O2 gas permeabilities were found to be lower in BPSH and SDAPP as compared to poly(perfluoro sulfonic acid) because of difference in Tg (TgBSPH= 250 oC, TgSDAPP= 330 oC versus TgNafion=150 oC). Higher Tg polymers have a more rigid, inflexible polymer segments causing a reduction in gas permeability. In comparison to SDAPP, BPSH has a lower O2 gas permeability because of the bulky side groups in the SDAPP backbone. O2 sorption measurements were carried out both under non-humidified and humidified conditions as a function of relative humidity and temperature at a normal PEM operating pressure of 1 atm. Under non-humidified conditions, BPSH, SDAPP, and Nafion 112 exhibited Henry's Law sorption, consistent with dilute dissolution of O2 into the polymer matrix. The enthalpies of sorption were calculated to determine the interaction of O2 with each membrane. The sorption enthalpies in BPSH and SDAPP increased with increasing pressure indicating the formation of more O2-O2 interactions. The enthalpies in Nafion 112 were relatively constant with increasing pressure. In the presence of moisture, the sorption behavior changed from Henry's Law to Type IV sorption behavior, which is common in hydrophilic polymers. The SDAPP membrane was found to have the highest percent wet O2 mass uptake because of a higher number of sulfonic acid groups interacting with the water/O2 system. Finally the O2 sorption for various porous catalyst powders, consisting of platinum supported on carbon was measured in the non-humidified and humidified state. The catalysts were found to have Knudsen diffusion in the non-humidified state with 20 wt% Pt-C having the largest O2 sorption. In the humidified state, the highest O2 mass uptake was achieved with 40 wt% Pt-C. These results are explained in terms of the trade-off between catalyst dispersion and catalyst size. Furthermore, O2 sorption measurements were utilized for membrane electrode assemblies containing 40 wt% Pt-C and hot pressed at 210 oC for BPSH-35 (25 and 80K) and Nafion 112 membranes. The same sorption behavior occurred in the MEAs as in the neat membrane, but at a lower capacity. This is because the electrode introduces a more tortuous path to the gas molecules permeating across the membrane. / Ph. D.
38

Advanced Polymeric Membranes and Multi-Layered Films for Gas Separation and Capacitors

Shaver, Andrew Thomas 30 June 2016 (has links)
The following studies describe the synthesis and properties of a family of poly(arylene ether ketone)s which are well known to have good thermal stability, mechanical durability, and other film properties. These poly(arylene ether ketone)s were functionalized with fluorine, oxidized, blended, and crosslinked to increase performance with focus on materials for polymeric capacitors and gas separation membranes. There is a need for polymeric capacitors with improved energy storage density and thermal stability. In this work, the affect of polymer molecular structure and symmetry on Tg, breakdown strength, and relative permittivity was investigated. A systematic series of four amorphous poly(arylene ether ketone)s was compared. Two of the polymers had symmetric bisphenols while the remaining two had asymmetric bisphenols. Two contained trifluoromethyl groups while the other two had methyl groups. The symmetric polymers had Tg's of approximately 160 °C while the asymmetric polymers showed higher Tg's near 180 °C. The symmetric polymers had breakdown strengths near 380 kV/mm at 150 °C. The asymmetric counterparts had breakdown strengths near 520 kV/mm even at 175 °C, with the fluorinated polymers performing slightly better in both cases. The non-fluorinated polymers had higher relative permittivities than the fluorinated materials, with the asymmetric polymers being better in both cases. Two amorphous, high glass transition, crosslinkable poly(arylene ether)s for gas purification membranes have been studied. The polymers were polymerized via step growth and contained tetramethyl bisphenol F and either 4,4'-difluorobenzophenone or 4,4'-dichlorodiphenylsulfone. The benzylic methylene group in tetramethyl bisphenol F can undergo oxidation reactions and crosslinking with UV light. The polymers were oxidized under two different conditions, one by chemical treatment using oxone and KBr and one by elevated thermal treatment in air. Thermogravimetric analysis, 1H-NMR and attenuated total reflectance Fourier transform infrared spectroscopy revealed the progress of the thermal oxidation reactions. Both polymers produced tough, ductile films and gas transport properties of the non-crosslinked linear polymers and crosslinked polymer was compared. Crosslinking was performed by irradiating polymer films for one hour on each side in air under a 100W high intensity, long-wave UV lamp equipped with a 365-nm light filter. The O2 permeability of tetramethyl bisphenol F containing non-crosslinked poly(arylene ether ketone) was 2.8 Barrer, with an O2/N2 selectivity of 5.4. Following UV crosslinking, the O2 permeability decreased to 1.8 Barrer, and the O2/N2 selectivity increased to 6.2. Poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) is a commercial polymer that is utilized for gas separation membranes. It has a relatively high free volume with high gas permeabilities but suffers from low gas selectivities. In this study, PPO polymers with number average molecular weights of 2000, 6000, 17,000, 19,000 and 22,000 were synthesized and blended with a poly(arylene ether ketone) synthesized from bisphenol A and difluorobenzophenone (BPA-PAEK) to make UV-crosslinkable films. The ketone and benzylic methylene groups on the BPA-PAEK and the PPO polymers respectively formed crosslinks upon exposure to broad wavelength UV light. The crosslinked blends had increased selectivities over their linear counterparts. DSC thermograms showed that the blends with all but the lowest molecular weight PPO had two Tg's, thus suggesting that two phases were present, one high in PBA-PAEK and the other high in PPO composition. The PBA-PAEK blend with the 2000 Mn PPO showed only one Tg between the two control polymers. Despite the immiscibility of these films, the gel fractions after UV exposure were high. Gel fractions as a function of the amount of the 22,000 Mn PPO were explored and did not show any significant change. UV spectroscopy of the individual components and the blends showed that more broad wavelength light was transmitted through the PPO component, so it was reasoned that films that was high in PPO composition crosslinked to deeper depths. The O2/N2 permeabilities and selectivities were measured for the linear and crosslinked films. Between the 33/67, 67/33, and 90/10 22k PPO/BPA PAEK crosslinked blended films, the 90/10 PPO/BPA PAEK gained the most selectivity and maintained a larger amount of its permeability. In comparison to commercial gas separation polymers, the non-crosslinked 33/67 22,000 Mn PPO/BPA PAEK blend outperformed polysulfone and cellulose acetate with a 2.45 degree of acetylation. Overall, we were able to blend a small amount of BPA PAEK with the commercially used PPO to create a mechanically robust crosslinked polymer film. / Ph. D.
39

Electronic and optical properties of conducting polymers from quantum mechanical computations

Mirsakiyeva, Amina January 2017 (has links)
Conductive polymers are also known as "organic metals" due to their semiconducting properties. They are found in a wide range of applications in the field of organic electronics. However, the growing number of experimental works is not widely supported with theoretical calculations. Hence, the field of conductive polymers is experiencing lack of understanding of mechanisms occurring in the polymers. In this PhD thesis, the aim is to increase understanding of conductive polymers by performing theoretical calculations.        The polymers poly(3,4-ethylenedioxythiophene) (PEDOT) together with its selenium (PEDOS) and tellurium (PEDOTe) derivatives, poly(p-phenylene) (PPP) and naphthobischalcogenadiazoles (NXz) were studied. Several computational methods were applied for analysis of mentioned structures, including density functional theory (DFT), tight-binding modelling (TB), and Car-Parrinello molecular dynamics (CPMD) calculations. The combination of CPMD and DFT calculations was applied to investigate the PEDOT, PEDOS and PEDOTe. The polymers were studied using four different functionals in order to investigate the full picture of structural changes, electronic and optical properties. Temperature effects were studied using molecular dynamics simulations. Wide statistics for structural and molecular orbitals analysis were collected.         The TB method was employed for PPP. The formation and motion of the excitations, polarons and bipolarons, along the polymer backbone was investigated in presence of electric and magnetic fields. The influence of non-magnetic and magnetic impurities was determined.        The extended π-conjugated structures of NXz were computed using B3LYP and ωB97XD functionals in combination with the 6-31+G(d) basis set. Here, the structural changes caused by polaron formation were analyzed. The combined analysis of densities of states and absorption spectra was used for understanding of the charge transition. / <p>QC 20170928</p>
40

"Efeitos de interface sobre as propriedades ópticas de polímeros conjugados" / Effect of Interface on the Optic Conjugated Polymer Properties

Borges, Célio Aécio Medeiros 28 June 2005 (has links)
Esta tese de doutorado apresenta os resultados do estudo sistemático das propriedades ópticas das interfaces que aparecem em dispositivos orgânicos atuais emissores de luz ou OLEDs. Estamos interessados no entendimento do papel de cada uma das interfaces metal/polímero e ITO/polímero sobre a emissão da camada orgânica ativa emissora de luz. Para tanto, se fez necessário o domínio de todas as etapas de preparação e caracterização de filmes finos orgânicos, desde a síntese química dos polímeros até a preparação de amostras adequadas que permitissem a realização dos objetivos propostos. Ênfase foi dada aos processos de excitação e de relaxação energética dos portadores de carga (elétrons e buracos) em filmes ultrafinos automontados próximos às interfaces, correlacionando-os direta ou indiretamente com os efeitos de interface. Através do desenvolvimento e domínio de uma nova metodologia de preparação de filmes orgânicos, verificamos que a intensidade da luminescência de um filme de prova ultrafino de poli(p-fenileno vinileno) (PPV) com espessura em torno de 1,5 nm sofre grandes variações em uma extensa região próxima às interfaces metálicas de Au, Al e de ITO (óxido de índio-estanho). Esta camada de prova foi gradualmente separada da interface variando-se de forma controlada a espessura de um filme polimérico espaçador opticamente inerte. O perfil de intensidade da fotoluminescência nas proximidades das interfaces foi determinado em função da distância entre as superfícies estudadas (vidro, quartzo, metálica ou ITO) e a camada de prova emissora de PPV. Duas regiões relacionadas a processos radiativos distintos foram bem estabelecidas para as interfaces metálicas: uma região de extinção, nas proximidades da interface (< 20 nm), onde a luminescência é fortemente suprimida e uma outra de aumento da luminescência entre 20 e 90 nm. A grande variação da intensidade da luminescência observada neste trabalho é explicada considerando efeitos de interferência em uma semicavidade óptica, além dos processos de transferência de energia tipo Förster entre estados do PPV e estados de plásmons superficiais no metal. Verificamos que a distribuição espacial da radiação emitida é profundamente alterada por processos não radiativos de transferência de energia e pelas condições impostas pelas interfaces em uma semicavidade óptica. Modificações da superfície de ITO foram realizadas pelo tratamento acídico com água-régia suave. Nós observamos que a refletividade do ITO é fortemente dependente do tempo do tratamento e da espessura do espaçador. Como nos filmes metálicos, a emissão de um filme de prova de PPV sofre alterações nas proximidades da interface contendo ITO. Aqui, os parâmetros materiais (índice de difração, reflectância e comprimento de onda da emissão), a estrutura de superfície do ITO e os fatores geométricos mostram um papel importante. Cálculos da intensidade da emissão nas proximidades das interfaces descrevem de modo satisfatório os resultados experimentais. Do perfil de intensidade calculado próximo das interfaces, concluímos que a espessura e a posição da camada ativa emissora de luz devem ser otimizadas de modo a coincidir com a região de aumento ou amplificação da luminescência. / This PhD thesis is an extensive study of the optical properties of the interfaces of organic light-emitting devices (OLED’s). In particular, we investigated the influence of interfaces metal/polymer and ITO/polymer on the emission of an active layer in such devices. Therefore, it was necessary to dominate all the processes of fabrication and characterization of the multilayered structures used in the present investigation. We have used a very thin PPV probe layer (1.5 nm) to map the optical properties very near the metal/organic and the Indium-Tin Oxide (ITO)/organic interfaces. A new Spin-Layer-by-Layer method was employed which allowed a control of deposition of layers at the monolayer level. Precise variation of the metal/PPV or ITO/PPV separation over the entire substrate surface was achieved by the deposition of an organic inert spacer layer. The ITO surface modifications were carried out by soft acidic aquaregia treatment. A strong modulation of the probe layer emission was observed near the metal and ITO interfaces. These results are explained by calculations which include competing short range radiationless energy transfer and intensity modulation due effects produced by the optical cavity formed by metal/polymer films/air. At small distances (<20 nm) from interface, collective excitations in the metal act as energy acceptors, which open up an efficient nonradiative channel. Here, material parameters (diffraction index, reflectance and emission wavelength, for example), surface treatment and structure as well as geometrical factors may play an important role.

Page generated in 0.0342 seconds