1 |
Corrosion in New Construction:Elevated Copper, Effects of Orthophosphate Inhibitors, and Flux Initiated Microbial GrowthGriffin, Allian Sophia 15 April 2010 (has links)
It is generally acknowledged that a variety of problems affecting aesthetics, health, and corrosivity of potable water can arise during installation of building plumbing systems. These include 'blue water', microbial infestation, and rapid loss of disinfectant residual, among other things. Frequently cited causes of the problems include metallic fines left in the plumbing lines from deburring, cutting and product fabrication; solder flux residuals (water soluble and petroleum based flux); and solvents for CPVC. Mechanistically, some materials such as flux contain high chloride, high ammonia and cause low pH, which can increase the corrosivity of water held in the lines. Indirect effects are also suspected to be important. For example, ammonia from flux and organic carbon from flux or PVC solvents can spur microbial growth, which in turn can reduce pH or otherwise increase corrosivity. Recent work has also demonstrated that problems with lead leaching to water from brass in modern plumbing can actually be worse in PVC/plastic than in copper systems, if certain types of microbes such as nitrifiers proliferate and drop pH. Some of the problems initiated by construction practices can persist indefinitely, causing higher levels of lead and copper in water, or longer term, contributing to failures of the plumbing system.
Blue water from high copper concentrations is a confounding problem that continues to arise in some locales of the United States. One public elementary school in Miami Dade County is experiencing blue water issues as manifested by blue ice cubes and sink staining. In addition to the aesthetic problems, copper levels are above the EPA's Copper Action Level of 1.3 ppm. Bottled water has been substituted for tap water consumption, which has created a financial burden. The pH of the school's water ranges from 7.15 - 7.5 and the school itself is located 1 ½ miles off the main distribution line resulting in a very low chlorine residual of between 0.06 mg/L Cl2 and 0.18 mg/L Cl2. On site water was shipped to Virginia Tech from Miami to be used in this study. Preliminary testing showed that an increase in the pH of the water would decrease copper leaching. Several pH's were tested which revealed that increasing the pH of the water to 8.5 would drop copper below 1.3 mg/L. When these recommendations were implemented at the school, the high alkalinity and calcium rich water caused calcite scales to form which clogged the chemical feed nozzles. Further bench scale testing indicated that adding 2 mg/L orthophosphate corrosion inhibitor would effectively decrease copper to a level that would comply with the EPA's Copper Action Limit.
Orthophosphate corrosion inhibitors are used by utilities to limit lead and copper corrosion from consumer's plumbing. An evaluation comparing the effects of both 100% orthophosphate inhibitor and orthophosphate/polyphosphate inhibitor blends was performed to study the effects they have on galvanic corrosion, metallic corrosion, microbial growth and the decay of chloramine disinfectant. On site water was sent to Virginia Tech from UNC for use in this bench scale study. The results from this study indicated that 100% orthophosphate inhibitor was the most effective corrosion inhibitor at decreasing metallic corrosion.
It has long been known that microbial activity can have significant effects on water quality. This study evaluated nitrifying and heterotrophic bacterial growth in water systems containing copper pipes, a common plumbing product, and flux which is used in soldering copper pipes together in new construction. There are several types of commercially available fluxes which are often used when soldering new pipes together. Flux ingredients vary and can include extremely high concentrations of ammonia, zinc, chloride, tin, copper and TOC. Flux containing high amounts of ammonia can be detrimental to water quality because it can accelerate the occurrence of nitrification, thus creating a cascading set of problems including, but not limited to, pH decrease and copper corrosion. The results from this case study indicated that flushing a pipe system can effectively decrease the high concentrations of flux present in a new construction system; however, high levels of ammonia from flux can create an environment in which nitrifiers may proliferate within the system.
Many water utilities in the United States are switching disinfection type from chlorine to chloramine due to the increased stability, longer residual time, and overall safety benefits of chloramine. Although chloramines have been found to be a desirable means for disinfection, chloramine decay is an issue of great concern because if the chloramine residual decays, it can leave a water system unprotected against microbial infestation. A preliminary examination of this issue was performed in a laboratory setting to evaluate the many components that effect the stability of chloramine decay, including alkalinity, phosphate, temperature, and various pipe materials. The results from this experiment revealed that temperature increase, pH increase, and aged tygon tubing all accelerated the rate of chloramine decay. / Master of Science
|
2 |
Effects Of Orthophosphate Corrosion Inhibitor In Blended Water Quality EnvironmentsStone, Erica 01 January 2008 (has links)
This study evaluated the effects of orthophosphate (OP) inhibitor addition on iron, copper, and lead corrosion on coupons exposed to different blends of groundwater, surface water, and desalinated seawater. The effectiveness of OP inhibitor addition on iron, copper, and lead release was analyzed by statistical comparison between OP treated and untreated pilot distribution systems (PDS). Four different doses of OP inhibitor, ranging from zero (control) to 2 mg/L as P, were investigated and non-linear empirical models were developed to predict iron, copper, and lead release from the water quality and OP doses. Surface characterization evaluations were conducted using X-ray Photoelectron Spectroscopy (XPS) analyses for each iron, galvanized steel, copper, and lead/tin coupon tested. Also, a theoretical thermodynamic model was developed and used to validate the controlling solid phases determined by XPS. A comparison of the effects of phosphate-based corrosion inhibitor addition on iron, copper, and lead release from the PDSs exposed to the different blends was also conducted. Three phosphate-based corrosion inhibitors were employed; blended orthophosphate (BOP), orthophosphate (OP), and zinc orthophosphate (ZOP). Non-linear empirical models were developed to predict iron, copper, and lead release from each PDS treated with different doses of inhibitor ranging from zero (control) to 2 mg/L as P. The predictive models were developed using water quality parameters as well as the inhibitor dose. Using these empirical models, simulation of the water quality of different blends with varying alkalinity and pH were used to compare the inhibitors performance for remaining in compliance for iron, copper and lead release. OP inhibitor addition was found to offer limited improvement of iron release for the OP dosages evaluated for the water blends evaluated compared to pH adjustment alone. Empirical models showed increased total phosphorus, pH, and alkalinity reduced iron release while increased silica, chloride, sulfate, and temperature contributed to iron release. Thermodynamic modeling suggested that FePO4 is the controlling solid that forms on iron and galvanized steel surfaces, regardless of blend, when OP inhibitor is added for corrosion control. While FePO4 does not offer much control of the iron release from the cast iron surfaces, it does offer protection of the galvanized steel surfaces reducing zinc release. OP inhibitor addition was found to reduce copper release for the OP dosages evaluated for the water blends evaluated compared to pH adjustment alone. Empirical models showed increases in total phosphorus, silica, and pH reduced copper release while increased alkalinity and chloride contributed to copper release. Thermodynamic modeling suggested that Cu3(PO4)2·2H2O is the controlling solid that forms on copper surfaces, regardless of blend, when OP inhibitor is added for corrosion control. OP inhibitor addition was found to reduce lead release for the OP dosages evaluated for the water blends evaluated compared to pH adjustment alone. Empirical models showed increased total phosphorus and pH reduced lead release while increased alkalinity, chloride, and temperature contributed to lead release. Thermodynamic modeling suggested that hydroxypyromorphite is the controlling solid that forms on lead surfaces, regardless of blend, when OP inhibitor is added for corrosion control. The comparison of phosphate-based inhibitors found increasing pH to reduce iron, copper, and lead metal release, while increasing alkalinity was shown to reduce iron release but increase copper and lead release. The ZOP inhibitor was not predicted by the empirical models to perform as well as BOP and OP at the low dose of 0.5 mg/L as P for iron control, and the OP inhibitor was not predicted to perform as well as BOP and ZOP at the low dose of 0.5 mg/L as P for lead control. The three inhibitors evaluated performed similarly for copper control. Therefore, BOP inhibitor showed the lowest metal release at the low dose of 0.5 mg/L as P for control of iron, copper, and lead corrosion.
|
Page generated in 0.1055 seconds