• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 657
  • 155
  • 103
  • 60
  • 31
  • 17
  • 16
  • 15
  • 12
  • 9
  • 5
  • 4
  • 4
  • 4
  • 4
  • Tagged with
  • 1319
  • 346
  • 240
  • 212
  • 170
  • 169
  • 143
  • 134
  • 123
  • 119
  • 118
  • 113
  • 111
  • 108
  • 100
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Erste Untersuchungen zur Messung helizitätsabhängiger (Gamma N)-Wirkungsquerschnitte für das GDH-Experiment am MAMI

Heid, Erik. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2001--Mainz.
72

Essai d'optimisation d'un système pour l'étude de la résonance géante avec des photons monochromatiques.

Veyssiere, André. January 1900 (has links)
Thèse--Doct.-ing.--Bordeaux 1, 1971. N°: 151. / Bibliogr.
73

Microchannel plate detector technology potential for LUVOIR and HabEx

Schindhelm, Eric R., Green, J. C., Siegmund, Oswald H. W., Ertley, Camden, Fleming, Brian T., France, Kevin C., Harris, Walter M., Harwit, Alex, McCandliss, Stephan R., Vallerga, John V. 29 August 2017 (has links)
Microchannel plate (MCP) detectors have been the detector of choice for ultraviolet (UV) instruments onboard many NASA missions. These detectors have many advantages, including high spatial resolution (<20 mu m), photon counting, radiation hardness, large formats (up to 20 cm), and ability for curved focal plane matching. Novel borosilicate glass MCPs with atomic layer deposition combine extremely low backgrounds, high strength, and tunable secondary electron yield. GaN and combinations of bialkali/alkali halide photocathodes show promise for broadband, higher quantum efficiency. Cross-strip anodes combined with compact ASIC readout electronics enable high spatial resolution over large formats with high dynamic range. The technology readiness levels of these technologies are each being advanced through research grants for laboratory testing and rocket flights. Combining these capabilities would be ideal for UV instruments onboard the Large UV/Optical/IR Surveyor (LUVOIR) and the Habitable Exoplanet Imaging Mission (HABEX) concepts currently under study for NASA's Astrophysics Decadal Survey.
74

Measurement of collision cross sections of gases with photon echo techniques /

Yang, Tse Jeff January 1980 (has links)
No description available.
75

Photon Exchange Between a Pair of Nonidentical Atoms with Two Forms of Interactions

Golshan, Shahram Mohammad-Mehdi 05 1900 (has links)
A pair of nonidentical two-level atoms, separated by a fixed distance R, interact through photon exchange. The system is described by a state vector which is assumed to be a superposition of four "essential states": (1) the first atom is excited, the second one is in the ground state, and no photon is present, (2) the first atom is in its ground state, the second one is excited, and no photon is present, (3) both atoms are in their ground states and a photon is present, and (4) both atoms are excited and a photon is also present. The system is initially in state (1). The probabilities of each atom being excited are calculated for both the minimally-coupled interaction and the multipolar interaction in the electric dipole approximation. For the minimally-coupled interaction Hamiltonian, the second atom has a probability of being instantaneously excited, so the interaction is not retarded. For the multipolar interaction Hamiltonian, the second atom is not excited before the retardation time, which agrees with special relativity. For the minimally-coupled interaction the nonphysical result occurs because the unperturbed Hamiltonian is not the energy operator in the Coulomb gauge. For the multipolar Hamiltonian in the electric dipole approximation the unperturbed Hamiltonian is the energy operator. An active view of unitary transformations in nonrelativistic quantum electrodynamics is used to derive transformation laws for the potentials of the electromagnetic field and the static Coulomb potential. For a specific choice of unitary transformation the transformation laws for the potentials are used in the minimally-coupled second-quantized Hamiltonian to obtain the multipolar Hamiltonian, which is expressed in terms of the quantized electric and magnetic fields.
76

Time resolved single photon imaging in nanometer scale CMOS technology

Richardson, Justin Andrew January 2010 (has links)
Time resolved imaging is concerned with the measurement of photon arrival time. It has a wealth of emerging applications including biomedical uses such as fluorescence lifetime microscopy and positron emission tomography, as well as laser ranging and imaging in three dimensions. The impact of time resolved imaging on human life is significant: it can be used to identify cancerous cells in-vivo, how well new drugs may perform, or to guide a robot around a factory or hospital. Two essential building blocks of a time resolved imaging system are a photon detector capable of sensing single photons, and fast time resolvers that can measure the time of flight of light to picosecond resolution. In order to address these emerging applications, miniaturised, single-chip, integrated arrays of photon detectors and time resolvers must be developed with state of the art performance and low cost. The goal of this research is therefore the design, layout and verification of arrays of low noise Single Photon Avalanche Diodes (SPADs) together with high resolution Time-Digital Converters (TDCs) using an advanced silicon fabrication process. The research reported in this Thesis was carried out as part of the E.U. funded Megaframe FP6 Project. A 32x32 pixel, one million frames per second, time correlated imaging device has been designed, simulated and fabricated using a 130nm CMOS Imaging process from ST Microelectronics. The imager array has been implemented together with required support cells in order to transmit data off chip at high speed as well as providing a means of device control, test and calibration. The fabricated imaging device successfully demonstrates the research objectives. The Thesis presents details of design, simulation and characterisation results of the elements of the Megaframe device which were the author’s own work. Highlights of the results include the smallest and lowest noise SPAD devices yet published for this class of fabrication process and an imaging array capable of recording single photon arrivals every microsecond, with a minimum time resolution of fifty picoseconds and single bit linearity.
77

Two Photon Resonant Picosecond Pulse Propagation in Lithium Vapor

Mukherjee, Anadi 08 1900 (has links)
The work of this dissertation has been to prove that the coherence of multiphoton excitation can be studied by an appropriately phased and time delayed sequence of pulses. An application of this fundamental study of coherence has been made for the enhancement of third harmonic generation. The coherent recovery of the energy lost to the two photon absorption process enalled a larger propagation distance for the fundamental than in an interaction which is incoherent or coherent, but not using a 90 degree phase shifted pulse pair. Phase matching over this longer propagation distance gave an enhancement of third harmonic generation.
78

Non-degenerate Two Photon Gain In Bulk Gallium Arsenide

Turnbull, Brendan 01 January 2013 (has links)
The purpose of this thesis is to investigate the nonlinear phenomena known as doubly-stimulated, non-degenerate two-photon emission (ND-2PE) in Gallium Arsenide (GaAs). 2PE refers to the simultaneous emission of two-photons as electrons move from the conduction band in a direct gap semiconductor to the valence band. Following the same path for describing one-photon emission (1PE) we describe 2PE as a product of the irradiance, and the negative of the loss which in this case is two-photon absorption, , the negative coming from the population inversion. We attempt to observe 2PE by using a frequency non-degenerate pump-probe experiment in which a third beam optically excites a 4 µm thick GaAs sample. We use nondegenerate beams in hopes of utilizing the 3-orders of magnitude enhancement seen in twophoton absorption (2PA) by going to extreme nondegeneracy (END) to enhance 2PE. GaAs is chosen due to the availability of the appropriate wavelengths, the maturity of the GaAs technology, its use in optoelectronic devices and its ability to be electrically pumped. During the experimental development we learn how to effectively etch and manipulate thin GaAs samples and model the transmission spectrum of these samples using thin film transmission matrices. We are able to match the measured transmission spectrum with the theoretical transmission spectrum. Here we etch the bulk GaAs left on the sample leaving only the 4 µm thickness of molecular beam epitaxial grown GaAs plus additional layers of aluminum gallium arsenide (AlGaAs). These samples were grown for us by Professor Gregory Salamo of the University of Arkansas. iv Using the pump-probe experiment on the 4 µm GaAs sample, we measure the change of the 2PA due to the presence of optically excited carriers. The goal is to reduce the 2PA signal to zero and then invert the 2PA signal indicating an increase in transmission indicative of 2PE when the population is inverted. Our results show that we achieve a 45% reduction in the 2PA signal in a 4 μm thick GaAs sample due to the excited carriers. Unfortunately, we currently cannot experimentally determine whether the reduction is strictly due to free-carrier absorption (FCA) of our pump or possibly due to a change in the two-photon absorption coefficient. We measure the transmission of various wavelengths around the bang gap of GaAs as a function of excitation wavelength and achieve a transmittance of ~80% which we attribute to possibly be one photon gain (1PG) at 880 nm. We also go to cryogenic temperatures to concentrate the carriers near the bottom of the conduction band and improve the theoretical gain coefficient for 2PE. Unfortunately, we do not observe a measurable change in 2PA with the addition of optically excited carriers. Along with FCA of our infrared pump we suspect that the difficulties in this first set of experiments are also a result or radiative recombination due to amplified spontaneous emission reducing our free carrier density along with the fact that 4 m is too thick for uniform excitation. We now have 1 m samples from Professor Gregory Salamo which we hope will give better and more definitive results
79

Measurement Of Differential Photon-jet Cross Section From 7 Tev Pp Collisions In The Cms Experiment At The Lhc

Ocalan, Kadir 01 March 2012 (has links) (PDF)
Prompt photons are produced primarily by quark-gluon compton scattering and quark-anti-quark annihilation mechanisms that their measurements are driven by several motivations at hadron colliders. Measurement of prompt photons can be used for probing perturbative Quantum Chromodynamics (pQCD). Prompt photons are produced in the final states of important decays providing evidence for low mass Higgs boson and new physics searches. Compact Muon Solenoid (CMS) is one of the multi-purpose experiments conducted at the Large Hadron Collider (LHC) to study the Standard Model (SM) physics including prompt photons and new theories in proton-proton collisions. In this thesis, photon reconstruction is discussed along with the photon identification methods in the CMS experiment. Photon efficiency measurements are presented as an important ingredient for photon+jet cross section measurement. Photon High Level Trigger (HLT) efficiencies, reconstruction (RECO) efficiencies, and identification (ID) efficiencies are presented that are measured from collision data recorded by the CMS detector and Monte Carlo simulation data. Efficiency corrected differential photon+jet cross section measurement results are presented in this study. The collision data used in this thesis corresponds to 2.2 /fb integrated luminosity collected by the CMS detector at a center-of-mass energy of 7 TeV from 2011 LHC proton-proton collision running.
80

The Applications of Two-photon Confocal Microscopy and Micro-spectroscopy¡GSHG imaging of Teeth and KTP

Wang, Yung-Shun 23 June 2000 (has links)
In this study, we have developed a high performance multi-photon microscopic system to perform second- harmonic (SH) imaging on a tooth and a KTP crystal . The high sensitivity of the system allows acquisition rate of 300 seconds/frame with resolution at 512¡Ñ512 pixels. The surface SH signal generated from the tooth and the KTP crystal is also carefully verified through micro-spectroscopy, polarization rotation and wavelength tuning. In this way, we can ensure the authenticity of the signal. KTP crystal and the enamel that encapsulates the dentine is known to possess highly ordered structures. The anisotropy of the structure is revealed in the microscopic SH images of the tooth and the KTP crystal samples.

Page generated in 0.0605 seconds