• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 42
  • 5
  • 5
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 70
  • 70
  • 70
  • 20
  • 19
  • 18
  • 15
  • 14
  • 11
  • 11
  • 11
  • 11
  • 10
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of an integrally wound tungsten and aluminum filament for physical vapor deposition

Goble, William, Ortiz, Ricardo 22 July 2016 (has links)
As part of the effort to increase the reliability of the MMT Observatory (MMTO) 6.5m Primary Mirror Coating System, the specified filament has changed from a configuration in which the aluminum charge is hand wound around a tungsten filament to a configuration in which the aluminum is integrally wound with the tungsten at the time of filament manufacture. In the MMTO configuration, this filament consists of the three strands of tungsten wire and one strand of aluminum wire. In preparation of a full system test utilizing two hundred filaments fired simultaneously, an extensive testing program was undertaken to characterize these filaments using a four filament configuration in the MMTO small coating chamber (0.5m) and then a forty filament configuration in the University of Arizona Steward Observatory coating chamber (2m). The testing using the smaller coating chambers has shown these filaments provide very predicable coatings from test to test, and with the proper heating profile, these filaments greatly reduce the likelihood of aluminum drips. The initial filament design was modified during the course of testing by shortening the unwound filament length to closer match the aluminum load required in the MMTO coating chamber. This change increased the aluminum deposition rates without increasing the power delivered of the filament power supplies (commercial welders). Filament power levels measured at the vacuum chamber feedthroughs, currents, and deposition rates from multiple coating tests, including a full system test, are presented.
2

Physical vapor deposition of novel thin-film solar absorbers

Waters, Benjamin E. 02 July 2012 (has links)
Current leading thin-film solar cell technologies, i.e., cadmium telluride (CdTe) and copper indium gallium diselenide (CIGS), employ elements which are either toxic (Cd), or rare and/or expensive (In, Te, Ga, and Cd). The aim of this thesis is to investigate new, abundant, non-toxic p-type semiconductors for potential solar absorber application. Two ternary chalcogenides, Cu���PSe��� and CuTaS���, were selected for their attractive calculated optical absorption properties. Thin films of both materials were synthesized using physical vapor deposition (PVD) techniques in conjunction with post-deposition annealing. Cu���PSe��� appears promising for solar absorber applications, with a measured optical bandgap of 1.2 eV, an absorption coefficient (��) reaching 10��� cm�����, Hall mobilities of 19.8���30.3 cm��/V���s, and carrier concentrations of 3.3���4.9 10����� cm�����. Optical characterization of CuTaS��� thin-films showed a rapid turn-on of absorption, with �� exceeding 10��� cm����� within 0.5 eV of the bandgap. To date, reproducible synthesis of CuTaS��� thin films has been problematic. Moreover, these films are insulating and thus not yet appropriate for thin-film solar cell absorber applications. / Graduation date: 2013
3

Deposition of titanium dioxide by physical vapor deposition

Dissanayake, Nishantha B. January 2003 (has links)
Thesis (M.S.)--Ohio University, June, 2003. / Title from PDF t.p. Includes bibliographical references (leaves 71-72).
4

Synthesis and characterization of zinc oxide nanostructures for piezoelectric applications

Hughes, William L. January 2006 (has links)
Thesis (Ph. D.)--Materials Science and Engineering, Georgia Institute of Technology, 2007. / Wang, Zhong Lin, Committee Chair ; Wong, C.P., Committee Member ; Summers, Christopher J., Committee Member ; Degertekin, F. Levent, Committee Member ; Bottomley, Lawrence A., Committee Member.
5

Design of a fiber coating system for physical vapor deposition

Culler, Adam J. January 2001 (has links)
No description available.
6

Methods for modifying the physical and catalytic properties of surfaces

Flaherty, David William, 1980- 05 October 2010 (has links)
Catalysts can be significantly improved by modifying their structure or composition. Simple adaptations of the physical structure of a catalyst can give rise to changes in the chemical behavior, in part, due to alterations in the coordination of active sites. Modifications in the surface or bulk composition of a material have a profound impact on the chemistry that is promoted as a result of electronic and physical factors. Optimizing these qualities may enhance the catalyst’s activity, selectivity or stability. In this dissertation, we explore the application of two distinct approaches for modifying the chemical properties of catalytically active materials. Through the use of a broad array of techniques we quantify changes in critical properties such as physical-crystallographic structure; morphology, surface area and porosity; as well as catalytic activity, selectivity and stability. First, reactive ballistic deposition of metal atoms within a low pressure gas provides a unique opportunity for synthesizing thin films of a wide variety of materials. The morphology, structure, and porosity of the resulting material can be tailored through control of the deposition angle and substrate temperature. By conducting deposition perpendicular to the surface, a film can be grown with a dense, conformal structure. On the other hand, deposition at oblique angles results in high surface area, porous films comprised of regular arrays of nanocolumnar structures. Furthermore, variations in the deposition angle allow for the inclusion of under-coordinated sites which change the chemical activity of the surface. Improvements in the activity, selectivity and stability of transition metal catalysts can be made by alloying the catalyst with a second element. The formation of molybdenum carbide decreases the strength of chemisorption on the surface, with respect to molybdenum, and improves selectivity for the dehydrogenation of formic acid. Platinum is active for the water-gas shift reaction. However, this catalyst cannot operate at low temperatures due to CO poisoning and is susceptible to deactivation due to accumulation of carbonaceous deposits. The formation of a platinum-copper near-surface alloy dramatically modifies the interactions of the surface with CO, H₂O and H₂ which can enhance the performance of this catalyst for the water-gas shift reaction. / text
7

Development Of Cubic Boron Nitride (cbn) Coating Process For Cutting Tools

Cesur, Halil 01 June 2009 (has links) (PDF)
In today&amp / #8217 / s market conditions, higher tool life and durable cutting tools which can stand high cutting speeds are required in chip removal process. In order to improve the performance of cutting tools, coatings are employed extensively. Cubic boron nitride (cBN) is a new kind of coating material for cutting tools due to its outstanding properties and testing of cBN as a hard coating for machining have been increasing in recent years. However, there are some challenges such as compressive residual stress, poor adhesion and limiting coating thickness during the deposition of cBN on substrates. In this study, cubic boron nitride (cBN) coatings are formed on cutting tools from hexagonal boron nitride (hBN) target plates. For this purpose, a physical vapor deposition (PVD) system is utilized. PVD system works on magnetron sputtering technique in which material transfer takes place from target plate to substrate surface. Firstly, cBN coatings are deposited on steel and silicon wafer substrates for measurements and analyses. Compositional, structural and mechanical measurements and analysis are performed for the characterization of coatings. Next, several types of cutting tools are coated by cBN and the effects of cBN coatings on cutting performance are investigated. Finally, it can be said that cubic boron nitride coatings are successfully formed on substrates and the improvement of wear resistance and machining performance of cBN coated cutting tools are observed.
8

Fabrication of surface enhanced Raman spectroscopy (SERS) active substrates based on vertically aligned nitrogen doped carbon nanotube forest

Alam, Md Khorshed January 2015 (has links)
This thesis work describes the fabrication and surface enhanced Raman spectroscopy (SERS) characterization of vertically aligned nitrogen (N) doped multi walled carbon nanotube (MWCNT) forests coated by silver (Ag) and gold (Au) nanoparticles. In the present work, the CNT forests were grown from a catalyst metal layer by the chemical vapor deposition (CVD) process at temperature of 800 oC and a physical vapor deposition (PVD) and annealing processes were applied subsequently for the evaporation and diffusion of noble metal nanoparticles on the forest. Transistor patterning of 20, 50 and 100 μm were made onto the silicon-oxide (SiO2) wafers through the photolithography process with and without depositing a thickness of 10 nm titanium (Ti) buffer layer on the Si-surfaces. Iron (Fe) and cobalt (Co) were used together to deposite a thickness of 5 nm catalyst layer onto the Single Side Polished (SSP) wafers. As carbon and nitrogen precursor for the CNT growth was used pyridine. Two different treatment times (20 and 60 minutes) in the CVD process determined the CNT forest height. Scanning Electron Microscopy (SEM) imaging was employed to characterize the CNT forest properties and Ag and Au nanoparticle distribution along the CNT walls. The existence of “hot spots” created by the Ag and Au nanoparticles through the surface roughness and plasmonic properties was demonstrated by the SERS measurements. Accordingly, the peak intensity at wave number of 1076 cm-1 was picked up from each SERS spectra to establish the Ag- and Au-trend curves with different concentrations of 4-ATP solution. The SERS mapping was also carried out to study the Ag- and Au-coated CNT surface homogeneity and “hot spots” distribution on the CNT surface. The SERS enhancement factors (EF) were calculated by applying an analyte solution of ethanolic 4-ATP on the CNT surface. The calculated values of EF from Ag- and Au-coated CNT forests were 9×106 and 2.7×105 respectively.
9

Change in the branch period of the step pattern formed by a moving linear source : initial coarsening and effect of an abrupt change in the velocity

Uwaha, Makio, Sato, Masahide, Kawaguchi, Masashi, Kondo, Shinji 01 1900 (has links)
No description available.
10

高エネルギー反射光によるEB-PVD遮熱コーティングの残留応力分布の解析

鈴木, 賢治, SUZUKI, Kenji, 松本, 一秀, MATSUMOTO, Kazuhide, 久保, 貴博, KUBO, Takahiro, 町屋, 修太郎, MACHIYA, Shutaro, 田中, 啓介, TANAKA, Keisuke, 秋庭, 義明, AKINIWA, Yoshiaki 11 1900 (has links)
No description available.

Page generated in 0.1117 seconds