Spelling suggestions: "subject:"phytoextraction"" "subject:"phytoextration""
1 |
Einsatz von mobiler Hyperspektralsensorik zum Nachweis von Kontaminanten bei der Anwendung von PhytoremediationFisler, Andreas 21 May 2010 (has links)
Die Belastung des Bodens insbesondere mit toxischen Schwermetallen wird seit Beginn der industriellen Revolution im späten 18. Jahrhundert durch vielfältige Tätigkeiten der Menschen verursacht und tritt mittlerweile als flächendeckendes Phänomen auf. Im Unterschied zu organischen Kontaminationen werden Schwermetalle im Boden nicht abgebaut. Sie reichern sich vielmehr im Boden an und gelten daher als irreversible Immissionen.
Schwermetalle können jedoch durch Pflanzen aus dem Boden aufgenommen und dadurch kontrolliert entsorgt werden. Für die Sanierung großer moderat belasteter Flächen bietet sich daher eine In-situ-Sanierung durch die so genannte Phytoremediation bzw. Phytoextraktion an, bei der die Pflanzen über die Nährstoffaufnahme aus dem Boden Schwermetalle mit aufnehmen und in der Pflanzenmasse anreichern. Eine geeignete Phyto-Pflanze ist Mais, der durch sein starkes Wachstum eine hohe Gesamtaufnahmerate an Schwermetallen besitzt.
Für die Prozessunterstützung von Sanierungsmaßnahmen, aber auch für die Sicherung von großflächigen kontaminierten Arealen mittels Pflanzen sind geeignete Verfahren zur Dokumentation von vorhandenen Kontaminationen und Sanierungserfolgen erforderlich. Von der Blattfläche wurden auf Spektralon normierte Hyperspektralaufnahmen mit chemischen Cadmiumanalysen der Pflanzen korreliert. Auf Grundlage der Ergebnisse mit Mais wurde die Methode auf weitere Pflanzen wie Rhabarber, Topinambur, Sonnenblume und Tabak und andere Schwermetalle wie Zink, Blei und Kupfer übertragen. Die Eignung der entwickelten Methode, verschiedene Schwermetalle in unterschiedlichen Pflanzen nachzuweisen, wurde auf der Grundlage der jeweiligen Bestimmtheitsmaße diskutiert.
Die entwickelte Messanordnung und die untersuchten Indices führen mit geokodierten Makro-Hyperspektralmessungen zu einem neuartigen Monitoringkonzept für die Phytoremediation und somit zu einer detailliert ortsaufgelösten Begleitung von Bodensanierungsprozessen.
|
2 |
Impact of Soil Inoculation with Bacillus amyloliquefaciens FZB42 on the Phytoaccumulation of Germanium, Rare Earth Elements, and Potentially Toxic ElementsOkoroafor, Precious Uchenna, Mann, Lotte, Ngu, Kerian Amin, Zaffar, Nazia, Monei, Nthati Lillian, Boldt, Christin, Reitz, Thomas, Heilmeier, Hermann, Wiche, Oliver 15 January 2025 (has links)
Bioaugmentation promises benefits for agricultural production as well as for remediation and phytomining approaches. Thus, this study investigated the effect of soil inoculation with the commercially available product RhizoVital®42, which contains Bacillus amyloliquefaciens FZB42, on nutrient uptake and plant biomass production as well as on the phytoaccumulation of potentially toxic elements, germanium, and rare earth elements (REEs). Zea mays and Fagopyrum esculentum were selected as model plants, and after harvest, the element uptake was compared between plants grown on inoculated versus reference soil. The results indicate an enrichment of B. amyloliquefaciens in inoculated soils as well as no significant impact on the inherent bacterial community composition. For F. esculentum, inoculation increased the accumulation of most nutrients and As, Cu, Pb, Co, and REEs (significant for Ca, Cu, and Co with 40%, 2042%, and 383%, respectively), while it slightly decreased the uptake of Ge, Cr, and Fe. For Z. mays, soil inoculation decreased the accumulation of Cr, Pb, Co, Ge, and REEs (significant for Co with 57%) but showed an insignificant increased uptake of Cu, As, and nutrient elements. Summarily, the results suggest that bioaugmentation with B. amyloliquefaciens is safe and has the potential to enhance/reduce the phytoaccumulation of some elements and the effects of inoculation are plant specific.
|
3 |
Field Studies on the Effect of Bioaugmentation with Bacillus amyloliquefaciens FZB42 on Plant Accumulation of Rare Earth Elements and Selected Trace ElementsOkoroafor, Precious Uchenna, Ikwuka, God’sfavour, Zaffar, Nazia, Epede, Melvice Ngalle, Mensah, Martin Kofi, Haupt, Johann, Golde, Andreas, Heilmeier, Hermann, Wiche, Oliver 04 February 2025 (has links)
This study is an investigation of the effect of soil bioaugmentation (inoculation) on a field scale with the commercially available product RhizoVital®42, containing Bacillus amyloliquefaciens FZB4, on element bioavailability, plant biomass production, as well as accumulation of rare earth elements (REEs), germanium, and selected trace elements. Zea mays and Helianthus annuus were selected as test plants. Post-harvest, results showed inoculation increased biomass production of Z. mays and H. annuus by 24% and 26%, albeit insignificant at p ≤ 0.05. Bioaugmentation enhanced Z. mays shoot content of P, Cd, and Ge by percentages between 73% and 80% (significant only for Ge) and decreased shoot content of REET, Pb, and Cu by 28%, 35%, and 59%, respectively. For H. annuus grown on bioaugmented soil, shoot content of Ca, Cu, Ge, REET, and Pb increased by over 40%, with a negligible decrease observed for Cd. Summarily, results suggest that bioaugmentation with Bacillus amyloliquefaciens FZB42 could enhance biomass production, increase soil element bioavailability enhance, and increase or reduce plant accumulation of target elements. Additionally, differences in P use efficiency could influence bioaugmentation effects on P accumulation.
|
Page generated in 0.076 seconds