• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 117
  • 42
  • 24
  • 11
  • 6
  • 6
  • 5
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 287
  • 128
  • 60
  • 52
  • 46
  • 41
  • 38
  • 34
  • 31
  • 28
  • 26
  • 26
  • 25
  • 24
  • 23
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

INHIBITION OF PHOSPHATIDYLINOSITOL 3-KINASE (PI3K) SIGNALLING LEADS TO RESISTANCE TO CHEMOTHERAPEUTIC AGENTS IN HUMAN CANCER CELLS

Mcdonald, GAIL 25 September 2008 (has links)
One of the major challenges associated with cancer therapy is the acquisition of chemoresistance by tumour cells. Many novel therapeutic approaches to overcome chemoresistance have involved targeting specific signalling pathways such as the phosphatidylinositol 3-kinase (PI3K) pathway, a stress response pathway known to be involved in the regulation of cell survival, apoptosis and growth. The present study sought to determine the effect of PI3K inhibition on the resistance of human cancer cells to various chemotherapeutic agents. Treatment with the PI3K inhibitors LY294002 or Compound 15e resulted in resistance to doxorubicin, etoposide, 5-fluorouracil, and vincristine in breast (MDA-MB-231) carcinoma cells as determined by clonogenic assays. Increased survival following PI3K inhibition was also observed in prostate (DU-145), colon (HCT-116) and lung (A-549) carcinoma cell lines exposed to doxorubicin. Drug resistance mediated by LY294002 was correlated with a decrease in cell proliferation, which was linked to an increase in the proportion of cells in the G1 phase of the cell cycle. Inhibition of PI3K signalling also resulted in higher levels of the cyclin-dependent kinase inhibitors p21Waf1/Cip1 and p27Kip1. Knockdown of p21Waf1/Cip1 expression with siRNA resulted in a significant decrease in LY294002-induced resistance. However, the effect of p27Kip1 knockdown on LY294002-induced resistance was inconclusive because of high inter-experimental variability. Furthermore, knockdown of either p21waf1/cip1 or p27Kip1 did not overtly prevent LY294002-induced cell cycle delay. Incubation in the presence of LY294002 after exposure to doxorubicin resulted in decreased cell survival. These findings provide evidence that PI3K inhibition leads to chemoresistance in human cancer cells by causing a delay in cell cycle. However, the timing of PI3K inhibition (either before or after exposure to anti-cancer agents) is a critical determinant of chemosensitivity. Since the efficiency of most chemotherapeutic agents depends on the rate of cell proliferation, delays in cell cycle progression may be an important mechanism of chemoresistance. / Thesis (Master, Anatomy & Cell Biology) -- Queen's University, 2008-09-24 14:00:39.679
2

Signalling pathways linking interleukin 13 receptor activation to lung epithelial cell function

Proctor, Victoria Kate January 2013 (has links)
The passage of fluid, ions and macromolecules across the epithelium is controlled primarily by epithelial tight junctions. Altered epithelial permeability is associated with lung disease, and barrier function is impaired by the Th2 cytokine IL-13. This thesis investigates the signalling pathways involved in the modulation of the epithelial barrier by IL-13 stimulation. Initial experiments demonstrated that the human sub-bronchial epithelial cell line Calu-3 could be easily manipulated when grown using an air-liquid culture system. Expression of various key tight junction proteins was demonstrated, as well as a high trans-epithelial resistance (TER) for up to 7 days. Stimulation with IL-13 resulted in a decrease in TER compared with controls and this decrease was shown to be prevented with the PI3K inhibitor ZSTK474. IL-13 did not increase paracellular permeability of the epithelial monolayer to FITC-dextran from the apical to the basolateral chamber and ZSTK474 did not influence FITC-dextran flux. Immunocytochemistry showed that the expression of the tight junction protein claudin 2 was increased by IL-13 stimulation and this change in expression was shown to be PI3K dependent with the PI3K inhibitor ZSKT474 preventing the increase. Further studies were carried out in an attempt to uncover the PI3K isoform responsible for the effects seen on both the TER and the TJ expression. It was shown that inhibition of the p110α isoform with PIK75 mimicked the result observed with the pan-PI3K inhibitor ZSTK474 and prevented the IL-13-induced claudin 2 upregulation. However none of the PI3K isoform inhibitiors showed the prevention of TER, as shown by the pan PI3K inhibitor ZSTK474. The role of STAT6 in TJ modulation was shown to be similar to that of PI3K, in that inhibition of STAT6 had a positive effect on the epithelial barrier by preventing the IL-13-induced TER decrease and the increase in the expression of claudin 2. In addition, both PI3K inhibition and STAT6 inhibition demonstrated effects on basal TER and claudin 2 expression, indicating that both pathways are involved in maintenance of epithelial barrier integrity.
3

Hemmung des PI3K-Signalweges im Ovarialkarzinom / Anti-tumour activity of phosphoinositide-3-kinase antagonist AEZS-126 in models of ovarian cancer

Kurz, Antje January 2014 (has links) (PDF)
Störungen des PI3K-AKT-Signalweges treten besonders häufig in Endometrium und Ovarialkarzinomen auf. Ursache kann eine Überaktivierung von Wachstumsfaktor-Rezeptoren, Mutationen oder der Funktionsverlust von PTEN sein, was zu einer Störung der Regulation und damit zu einer Überaktivierung des PI3K-AKTSignalweges führt und so das Einleiten autophagischer Prozesse verhindert. Hierauf kommt es zu unkontrollierter Zellvermehrung, welche zur Tumorentstehung und Tumorprogression beiträgt [12][23]. Die in dieser Arbeit durchgeführten Untersuchungen konnten zeigen, dass die Hemmung des PI3K-AKT-Signalweges durch den PI3K-Inhibitor AEZS-126 erfolgversprechende antiproliferative Effekte in in vitro-Modellen des Ovarialkarzinoms zeigte. In vitro konnte die niedermolekulare Pyridopyrazin-Verbindung AEZS-126 das Wachstum und die Progression von Zellen der parentalen Ovarialkarzinom-Zelllinie A2780, der daraus abgeleiteten cis-Platin-resistenten Tochterzelllinie Acis2780 und der aus einem Ovar-Adenokarzinom gewonnenen Zelllinie SKOV-3 signifikant hemmen. In Vitalitätsassays ermittelte IC50-Werte lagen im mikromolaren Bereich und zeigten konzentrationsabhängige Antitumor-Effekte. Neben den AEZS-126-abhängigen Effekten wurde auch die Wirksamkeit des mTOR-Inhibitors Rapamycin auf die Zelllinien A2780 und Acis2780 untersucht. Es zeigten sich ebenfalls konzentrationsabhängige antiproliferative Effekte. Durch die Kombination der beiden Inhibitoren AEZS-126 und Rapamycin konnte zusätzlich eine gesteigerte Wirksamkeit gegen die Tumorzellen erzielt werden und synergistische Effekte traten auf. ImWestern-Blot konnte nach Inkubation der Ovarialkarzinomzelllinien mit AEZS-126 durch den Einsatz von AEZS-126 eine verminderte Expression von pAKT nachgewiesen werden, welche insbesondere bei den cis-Platin-resistenten Acis2780-Zellen durch die Kombination mit Rapamycin noch verstärkt wurde. Durch FACS-Analysen konnte gezeigt werden, dass die Ovarialkarzinomzellen durch die Behandlung mit AEZS-126 im Wachstum gehemmt werden und unabhängig von ihrer Zellzyklusphase in den Zelltod geführt werden können. So zeigte sich in den Zellzyklusanalysen eine konzentrationsabhängige Verschiebung der Zellzahl von der G0/G1-Phase in die sub-G0-Phase, welche die Population der toten Zellen darstellt. Eine Spezifizierung des Zelltod-Mechanismuses erfolgte einerseits durch Annexin-V-FITC-FACS-Analysen und andererseits durch Vitalitätsassays mit Koinkubation von AEZS-126 mit dem Caspase-Inhibitor zVAD-fmk, dem Nekroptose-Inhibitor Necrostatin-1 und dem Nekrose-Inhibitor Necrox-2. Aus diesen Untersuchungen ging klar hervor, dass AEZS-126 in den Zelllinien A2780, Acis2780 und SKOV-3 Nekroptose induziert. Rapamycin alleine zeigte sowohl apoptotische als auch nekrotische Wirkmechanismen. Die Kombination der beiden Inhibitoren AEZS-126 und Rapamycin führte zu einer synergistischen Wirkverstärkung, was sich in einem verstärkten Absterben der Zellen schon bei geringeren eingesetzten Konzentrationen der beiden Inhibitoren zeigte. Auch hier traten hauptsächlich nekrotische Effekte auf. Von besonderem Interesse war die Interaktion von Ovarialkarzinomzellen (A2780, Acis2780), die mit AEZS-126 vorbehandelt worden waren, mit Zellen des Immunsystems. So konnte gezeigt werden, dass AEZS-126 eine verbesserte Zelllyse der Tumorzellen durch NK-Zellen ermöglicht. Zusätzlich konnten die cis-Platin-resistenten Acis2780-Zellen durch Vorbehandlung mit entsprechende Konzentrationen des PI3KInhibitors in vergleichbarem Ausmaß wie die parentalen A2780-Zellen für die Lyse durch NK-Zellen zugänglich gemacht werden. AEZS-126 scheint auf Grund dieser Ergebnisse und der schon nachgewiesenen guten antiproliferativen Wirkung von AEZS-126 auf verschiedene Zelllinien ein geeigneter Kandidat für weiterführende in vivo-Versuche zu sein. Zusätzlich sollte erwogen werden, neben der Inhibiton des PI3K-AKT-Signalweges eine zeitgleiche Hemmung des Ras-Raf-MEK-ERK-Signalweges in Betracht zu ziehen. Durch die Interaktionen der beiden Signalwege könnte es sonst bei der Inaktivierung des einen zur Aktivierung des anderen Signalweges kommen [143]. Durch eine Überexpression von pAKT durch eine PTEN-Mutation kommt es beispielsweise zur Inaktivierung von Ras und der darauf folgenden Signalkaskade, während ein erhöhtes Expressionsniveau an pAKT im PI3K-AKT-Signalweg zu einer Aktivierung von mTOR und damit zur Hemmung autophagischer Prozesse führt [23]. So kann die Phosphorylierung des Proteins p70S6K, dem Schlüsselmolekül zwischen den beiden Signalwegen, welches mTOR nachgeschaltet ist, durch Rapamycin gehemmt werden und damit zu einer erhöhten Aktivierung von AKT und ERK führen [143]. Durch die Kombinationsbehandlung mit Inhibitoren des PI3K-AKT-Signalweges, die an verschiedenen Stellen der Signalkaskade angreifen, kann, wie in dieser Arbeit gezeigt wurde, die Antitumorwirkung verstärkt werden. Die in dieser Arbeit untersuchten Inhibitoren AEZS-126 und Rapamycin zeigten bei den parentalen Ovarialkarzinom- zellen A2780 und den cis-Platin-resistenten Acis2780-Zellen in der Kombinationsbehandlung synergistische Effekte und führten schon bei geringen Konzentrationen zu verstärkter antiproliferativer Wirksamkeit. Aus den erzielten Ergebnissen geht hervor, dass die Kombinationsbehandlung mit AEZS-126 und Rapamycin geeignet wäre, in in vivo-Experimenten weiter untersucht zu werden. / Purpose Platinum resistance is the most crucial problem for treatment of ovarian cancer. There is a clinical need for new treatment strategies which overcome platinum resistance. Recently high level of AKT was shown to be involved in platinum resistance and furthermore in resistance against Natural-killer (NK)-cell mediated killing in ovarian cancer. Methods Here, we investigate the ability of the PI3K/AKT inhibitor AEZS-126 alone and in combination with rapamycin to selectively target ovarian cancer cell proliferation and survival in vitro by MTT-assays and FACS based analysis. Furthermore the mechanism of cytotoxicity is analysed by FACS based assays. The NK-killing efficiency of ovarian cancer cells with and without pre-treatment with AEZS-126 was analysed. Results AEZS-126 showed good anti-tumour activity in in vitro models of ovarian cancer. Main mechanism of cytotoxicity seems to be necroptosis which could be abrogated by co-incubation with necrostatin-1. Furthermore pre-treatment of platinum resistant cells with AEZS-126 resulted in an increased accessibility of these tumour cells for killing by NK-cells. Conclusion We demonstrated the highly efficient anti-tumour activity of AEZS-126 in in vitro models of ovarian cancer. Due to the good anti-tumour activity and the expected increase in NK-cell mediated killing even of platinum resistant tumour cells, AEZS-126 seems to be a promising candidate for clinical testing in ovarian cancer.
4

Investigation of the phosphatidylinositol 3-kinase pathway in B cells

Ma, Kewei 05 1900 (has links)
There is hardly a cellular process that is not regulated in some way by phosphoinositides, which makes biochemical and physiological studies of these lipids extremely important. PI 3-kinases are key regulators of phosphoinositide metabolism and have been shown to affect a large variety of cellular responses. The key products of PI 3-kinases that have functional activity in higher eukaryotic cells are PI(3,4,5)P₃ and PI(3,4)P₂. PI(3,4,5)P₃ is universally accepted as one of the most important second messengers in signal transduction. However, our knowledge of the functions of PI(3,4)P₂ as a lipid second messenger is much less precise. In this dissertation, work was undertaken to elucidate the regulation of PI(3,4,5)P₃ and PI(3,4)P₂ production and downstream signaling in B cells. Cells with membrane targeted exogenous SHIP were utilized to manipulate phosphoinositide levels. The relationship of PI(3,4,5)P₃ and PI(3,4)P₂ levels to downstream PKB phosphorylation and activation was studied. PI(3,4,5)P₃ and PI(3,4)P₂ levels were found to closely correlate with PKB phosphorylation levels at Thr308 and Ser473, respectively. In addition, PI(3,4)P₂ levels determine the PKB activity in the cytosol; while PI(3,4,5)P₃ levels determine PKB activity at the plasma membrane. Different doses and different forms of B cell receptor (BCR) agonists were used for stimulation. PI 3-kinase activation was studied carefully following stimulation with low doses of anti-BCR antibody and F(ab')₂ fragments. Low concentrations of F(ab')₂ fragments produced higher levels of PI(3,4,5)P₃ than did a high concentration of F(ab')₂ fragments. Downstream PKB signaling was studied in these models. Similar conclusions were drawn from both SHIP over-expressing BJAB cells and dose-dependent BCR stimulations. We speculated that phosphoinositides’ regulation of the kinetics of PKB phosphorylation at Ser473 and Thr308 might be mediated by additional proteins. Investigation of plasma membrane-associated PKB showed that it formed a protein complex of around 400KD, which we attempted to characterize further with respect to PKB phosphorylation and association with lipids. In conclusion, phosphoinositide production is intricately regulated in vivo to control downstream signaling. The levels of PI(3,4)P₂ and PI(3,4,5)P₃ have precise and profound effects on PKB and other molecules such as TAPP and Bam32. This study has contributed new insight into the PI 3-kinase signaling pathway from the aspect of phosphoinositide lipid function.
5

Roles of PI3K, Akt and PKA at Rostral Ventrolateral Medulla in a Mevinphos Intoxication Model of Brain Stem Death

Tsai, Ching-yi 14 July 2009 (has links)
As the origin of a ¡§life-and-death¡¨ signal that reflects central cardiovascular regulatory failure during brain stem death, the rostral ventrolateral medulla (RVLM) is a suitable neural substrate to evaluate the cellular mechanism of this fateful phenomenon. Based on a clinically relevant animal model that employed the organophosphate pesticide mevinphos (Mev) as the experimental insult, this study evaluated two hypotheses. First, transcriptional upregulation of nitric oxide synthase I or II (NOS I or II) gene expression by nuclear factor-£eB (NF-£eB) on activation of phosphoinositide 3-kinases (PI3K)/Akt/phosphatase and tensin homologue deleted on chromosome ten (PTEN) cascade in the RVLM underlies brain stem death. Second, muscarinic receptor-independent activation of cyclic adenosine monophosphate-dependent protein kinase A (PKA) in the RVLM is involved in the cardiovascular responses exhibited during Mev intoxication. In Sprague-Dawley rats, our results showed that microinjection bilaterally of Mev (10 nmol) into RVLM induced a progressive augmentation in NF-£eB, PI3K, Akt or PTEN activity that paralleled the increase in NOS II or peroxynitrite level in RVLM. Loss-of-function manipulations that included pharmacological blockade, gene knockdown, or immunoneutralization of NF-£eB, PI3K or Akt in RVLM significantly potentiated and prolonged the initial increase in ¡§life-and-death¡¨ signal, reversed the cardiovascular depression, and blunted the augmented expression of NOS II or nitrotyrosine on induced by Mev. Blockade of PI3K or Akt in RVLM also significantly blunted the Mev-induced activation of NF-£eB in the RVLM. However, immunoneutralization of PTEN in RVLM significantly diminished the increase in ¡§life-and-death¡¨ signal and potentiated the increase in Akt activity. We conclude that the PI3K/Akt cascade plays a ¡§pro-death¡¨ role in our Mev intoxication model of brain stem death by upregulating NF-£eB/NOS II/peroxynitrite in the RVLM, subject to antagonism by PTEN in this process. Microinjection bilaterally of Mev (10 nmol) into the RVLM induced a significantly augmentation in PKA activity in ventrolateral medulla that was not antagonized by coadministration of a nonselevtive or selective muscarinic receptor inhibitor. However, pharmacological blockade PKA in RVLM significantly blunted the initial increase in ¡§life-and-death¡¨ signal and the accompanying augmentation of NOS I expression in the ventrolateral medulla exhibited during Mev intoxication. We conclude that a muscarinic receptor-independent activation of PKA plays a ¡§pro-life¡¨ role in our Mev intoxication model of brain stem death by up regulating NOS I/PKG in the RVLM. According to this study, we proved that Mev stimulates different mechanism, muscarinic receptor-independent/PKA and PI3K/Akt/NF-£eB, to regulate NOS I and NOS II expression respectively, and induces cardiovascular responses during ¡§pro-life¡¨ and ¡§pro-death¡¨ phases. This information should provide further insights on the cellular mechanism of central cardiovascular regulation during the progression towards brain stem death, and offer news vistas in our search for therapeutic remedies or management strategies against fatal organophosphate poisoning and brain stem death.
6

Investigation of the phosphatidylinositol 3-kinase pathway in B cells

Ma, Kewei 05 1900 (has links)
There is hardly a cellular process that is not regulated in some way by phosphoinositides, which makes biochemical and physiological studies of these lipids extremely important. PI 3-kinases are key regulators of phosphoinositide metabolism and have been shown to affect a large variety of cellular responses. The key products of PI 3-kinases that have functional activity in higher eukaryotic cells are PI(3,4,5)P₃ and PI(3,4)P₂. PI(3,4,5)P₃ is universally accepted as one of the most important second messengers in signal transduction. However, our knowledge of the functions of PI(3,4)P₂ as a lipid second messenger is much less precise. In this dissertation, work was undertaken to elucidate the regulation of PI(3,4,5)P₃ and PI(3,4)P₂ production and downstream signaling in B cells. Cells with membrane targeted exogenous SHIP were utilized to manipulate phosphoinositide levels. The relationship of PI(3,4,5)P₃ and PI(3,4)P₂ levels to downstream PKB phosphorylation and activation was studied. PI(3,4,5)P₃ and PI(3,4)P₂ levels were found to closely correlate with PKB phosphorylation levels at Thr308 and Ser473, respectively. In addition, PI(3,4)P₂ levels determine the PKB activity in the cytosol; while PI(3,4,5)P₃ levels determine PKB activity at the plasma membrane. Different doses and different forms of B cell receptor (BCR) agonists were used for stimulation. PI 3-kinase activation was studied carefully following stimulation with low doses of anti-BCR antibody and F(ab')₂ fragments. Low concentrations of F(ab')₂ fragments produced higher levels of PI(3,4,5)P₃ than did a high concentration of F(ab')₂ fragments. Downstream PKB signaling was studied in these models. Similar conclusions were drawn from both SHIP over-expressing BJAB cells and dose-dependent BCR stimulations. We speculated that phosphoinositides’ regulation of the kinetics of PKB phosphorylation at Ser473 and Thr308 might be mediated by additional proteins. Investigation of plasma membrane-associated PKB showed that it formed a protein complex of around 400KD, which we attempted to characterize further with respect to PKB phosphorylation and association with lipids. In conclusion, phosphoinositide production is intricately regulated in vivo to control downstream signaling. The levels of PI(3,4)P₂ and PI(3,4,5)P₃ have precise and profound effects on PKB and other molecules such as TAPP and Bam32. This study has contributed new insight into the PI 3-kinase signaling pathway from the aspect of phosphoinositide lipid function.
7

The role of Phosphoinositide 3-Kinase in the Regulation of Cardiac Morphology and Function

Guo, Danny Unknown Date
No description available.
8

The role of Phosphoinositide 3-Kinase in the Regulation of Cardiac Morphology and Function

Guo, Danny 06 1900 (has links)
The traditional PI3K pathway relies on agonist mediated stimulation of PI3Kα through RTKs and PI3Kγ through GPCRs, which stimulate downstream enzymes such as Akt. This pathway has been found to be important in cardiomyocytes and cardiofibroblasts for regulating cardiac morphology and function. However, evidence has suggested that this traditional pathway does not fully represent the PI3K signaling cascade. We demonstrated that PI3Kγ regulates calcium through kinase independent interactions. PI3KγKO hearts rapidly develop systolic dysfunction and dilated cardiomyopathy in response to pressure overload due to excess matrix metalloproteinase mediated degradation of N-cadherin adhesion complexes. We also show a connection between the PI3K/PTEN and Casein Kinase 2, an enzyme that deactivates PTEN. Finally, our results demonstrate crosstalk between GPCRs and PI3Kα via transactivation of growth factor receptors. Our results provide insight into the regulation and the complexity of the PI3K/PTEN pathway. / Experimental Medicine
9

Investigation of the phosphatidylinositol 3-kinase pathway in B cells

Ma, Kewei 05 1900 (has links)
There is hardly a cellular process that is not regulated in some way by phosphoinositides, which makes biochemical and physiological studies of these lipids extremely important. PI 3-kinases are key regulators of phosphoinositide metabolism and have been shown to affect a large variety of cellular responses. The key products of PI 3-kinases that have functional activity in higher eukaryotic cells are PI(3,4,5)P₃ and PI(3,4)P₂. PI(3,4,5)P₃ is universally accepted as one of the most important second messengers in signal transduction. However, our knowledge of the functions of PI(3,4)P₂ as a lipid second messenger is much less precise. In this dissertation, work was undertaken to elucidate the regulation of PI(3,4,5)P₃ and PI(3,4)P₂ production and downstream signaling in B cells. Cells with membrane targeted exogenous SHIP were utilized to manipulate phosphoinositide levels. The relationship of PI(3,4,5)P₃ and PI(3,4)P₂ levels to downstream PKB phosphorylation and activation was studied. PI(3,4,5)P₃ and PI(3,4)P₂ levels were found to closely correlate with PKB phosphorylation levels at Thr308 and Ser473, respectively. In addition, PI(3,4)P₂ levels determine the PKB activity in the cytosol; while PI(3,4,5)P₃ levels determine PKB activity at the plasma membrane. Different doses and different forms of B cell receptor (BCR) agonists were used for stimulation. PI 3-kinase activation was studied carefully following stimulation with low doses of anti-BCR antibody and F(ab')₂ fragments. Low concentrations of F(ab')₂ fragments produced higher levels of PI(3,4,5)P₃ than did a high concentration of F(ab')₂ fragments. Downstream PKB signaling was studied in these models. Similar conclusions were drawn from both SHIP over-expressing BJAB cells and dose-dependent BCR stimulations. We speculated that phosphoinositides’ regulation of the kinetics of PKB phosphorylation at Ser473 and Thr308 might be mediated by additional proteins. Investigation of plasma membrane-associated PKB showed that it formed a protein complex of around 400KD, which we attempted to characterize further with respect to PKB phosphorylation and association with lipids. In conclusion, phosphoinositide production is intricately regulated in vivo to control downstream signaling. The levels of PI(3,4)P₂ and PI(3,4,5)P₃ have precise and profound effects on PKB and other molecules such as TAPP and Bam32. This study has contributed new insight into the PI 3-kinase signaling pathway from the aspect of phosphoinositide lipid function. / Medicine, Faculty of / Medicine, Department of / Experimental Medicine, Division of / Graduate
10

Targeting the protein tyrosine phosphatase, SHP2, and PI3K in FLT3-ITD+ leukemia

Bowling, Joshua D. 07 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Internal tandem duplications in the fms-like tyrosine kinase receptor (FLT3-ITDs) cause constitutive activation of the receptor and confer a poor prognosis in acute myeloid leukemia (AML). We hypothesized that Shp2 interacts with FLT3-ITD via protein complexes at tyrosine (Y) 768, 955, and/or 969 and that Shp2 and PI3K work cooperatively to promote FLT3-ITD-induced leukemogenesis. Consistently, mutation of N51-FLT3 tyrosine 768 to phenylalanine reduced proliferation and levels of phospho-Erk compared to N51-FLT3-expressing cells while having no effect on levels of phospho-STAT5. In transplants, C3H/HeJ mice injected with either WT-FLT3-, N51-FLT3-, or N51-Y768F-expressing cells showed that mutation of Y768 had no effect on overall survival. In addition, pharmacologic inhibition of Shp2 with II-B08 or PI3K with GDC-0941 in N51-FLT3-expressing cells and primary patient samples showed decreased proliferation. A possible mechanistic explanation for reduced proliferation and selective reduction of P-Erk levels in the N51-FLT3-Y768-expressing cells is through decreased recruitment of Grb2, which participates with son of sevenless, SOS, to activate the RAS-Erk signaling pathway. The lack of improvement in overall survival could be due to preserved STAT5 signaling, as observed during in vitro experiments. Collectively, these data suggest that the tyrosine 768 residue plays an important role in phospho-Erk signaling in N51-FLT3-expressing cells, and that pharmacologic therapy with Shp2 or PI3K inhibitors may provide a novel treatment approach for FLT3-ITD positive AML. For future directions, we plan to treat mice with the Shp2 inhibitor, II-B08, the PI3K inhibitor, GDC-0941, or a combination to determine the effect on overall survival.

Page generated in 0.0514 seconds