Spelling suggestions: "subject:"piezometers"" "subject:"piezometric""
1 |
Influences on piezometric measurementsWallace, James Robert 12 1900 (has links)
No description available.
|
2 |
Piezometric measurement of depth in open channelsEmmett, William Webster 08 1900 (has links)
No description available.
|
3 |
A comparison of manual and automated means of acquisition of permeability data in small diameter standpipes with reference to sites in Hong Kong /Fung, Ping-kwong, Axel. January 2003 (has links)
Thesis (M. Sc.)--University of Hong Kong, 2003.
|
4 |
ANALYSIS OF CONSTANT HEAD INJECTION TESTS IN SINGLE, PARTIALLY PENETRATING BOREHOLES.Marinelli, Frederick., Marinelli, Frederick. January 1984 (has links)
No description available.
|
5 |
A comparison of manual and automated means of acquisition of permeability data in small diameter standpipes with reference to sitesin Hong KongFung, Ping-kwong, Axel., 馮炳光. January 2003 (has links)
published_or_final_version / Applied Geosciences / Master / Master of Science
|
6 |
Micro fingerprint sensor based on piezoresistive nanocomposite polymers /Lu, Junyong. January 2008 (has links)
Thesis (M.Phil.)--Hong Kong University of Science and Technology, 2008. / Includes bibliographical references (p. 105-114). Also available in electronic version.
|
7 |
Development of sounding equipment for the assessment of the time- settlement characteristics of recent alluvial deposits when subjected to embankment loads.Jones, Geraint Alan. January 1992 (has links)
The whole of this thesis is my work unless specifically indicated to the contrary in the text,
and has not been submitted in part or in whole to any other University.
Some thirty years ago the author operated a deep sounding machine, one of the first in
the country, on a misty lake in Ireland and marvelled at the way subsoil information could
be garnered. The magic of the moment never entirely passed and when the opportunity
arose to use the technique in Natal the die was cast.
The development of the national road system surged in the early 1970's and since many
of these roads on the Natal coastal routes crossed extensive recent alluvial deposits, the
geotechnical problems of instability and settlement became major factors in the road
design. Traditional methods of investigation consisted of boreholes with sampling and
laboratory testing. Whilst these were satisfactory, provided they were of adequate quality,
they were relatively expensive if sufficiently detailed models of the subsoil were to be
obtained for design purposes.
Cone penetration testing provided a potential a solution and this led to research work
conducted over a period of twenty five years which continues today. The initial
development of ideas for improvements to the mechanical equipment took place whilst the
author was carrying out preliminary investigations for freeway routes over the coastal
alluvial deposits. This was followed by a period devoted largely to cone penetration testing
research and deVelopment and to embankment design methods at the National Institute
for Transport and Road Research, and to the initial registration for a Master's degree
under the supervision of Professor K Knight in 1975. This research programme was
completed as originally envisaged, but not submitted because during its course the author
conceived the idea of the piezometer cone. This proved to be such an exciting prospect
that the research and development continued for a number of years until piezometer cone
testing has now become almost routine for geotechnical investigations on alluvial deposits.
In 1983, due to Professor Knight's retirement from the University, Mr Phillip Everitt was
appointed as the supervisor.
At that stage piezometer testing was becoming accepted internationally and new aspects
and information frequently appeared. It was apparent, however, that the essential proof
of the system for the prediction of embankment performance was to use it at
embankments where the performance had been monitored. Eventually grants were
provided by the Department of Transport for this, which enabled two research projects to
be conducted during 1989 - 1990 and 1991 - 1992. After completion of the first of these
a presentation of the author's work on cone penetration testing since the mid 1960's was
made to the Faculty of Engineering at the University of Natal. The Executive Committee
of the University Senate subsequently approved, in August 1991, that the registration be
upgraded to doctoral status.
Mr Everitt's encouragement during this extended period has been a vital factor in ensuring
an outcome for this task and the author wishes to express his gratitude for this. / Thesis (Ph.D.)-University of Natal, Durban, 1992.
|
8 |
Development of sounding equipment for the assessment of the time- settlement characteristics of recent alluvial deposits when subjected to embankment loads.Jones, Geraint Alan. 31 March 2014 (has links)
Many embankments on the soft, highly variable, recent alluvial deposits along the South
African coast have suffered large settlements necessitating ongoing costly repairs.
Due to the soft variable soils, borehole sampling is difficult and laboratory testing requires
to be extensive for adequate subsoil modelling; cone penetration testing was considered
to be a potential means to overcome these problems. Twenty five years ago in South
Africa, as elsewhere, cone penetration testing equipment was relatively crude and the
methods of interpretation were simplistic. The application of cone penetration testing to
recent alluvial deposits therefore required improvements to both the equipment and the
derivation of soil parameters.
The equipment was upgraded by introducing strain gauge load cells capable of measuring
cone pressures in soft clays with adequate accuracy. Hence, correlations of cone pressures
with compressibility and shear strength became possible.
Predictions of settlement times and magnitudes are of equal importance and a
consolidometer-cone system was developed to assess both of these.
A piezometer was incorporated into a cone to ascertain whether the settlements were due
to consolidation. The piezometer cone performed so well that it superseded the
consolidometer-cone and by 1977 a field piezometer cone was in regular use.
Developments in piezocone interpretation have taken place concurrently with those in
equipment; coefficients of consolidation are evaluated from pore pressure dissipations, and
soils identified from the ratio of pore and cone pressures.
These developments have been validated in two recent research projects, by comparing
measured and predicted settlements at eleven embankments monitored for up to fifteen
years. The data shows that for embankments on the recent alluvial deposits the
constrained modulus coefficient, am is :
am = 2,6 ± 0,6
The data also shows that coefficients of consolidation from piezometer cone dissipation
tests are correlated with those from laboratory tests and back analysed embankment
performance as follows :
Embankment c = 3 CPTU c = 6 Lab cv
It is concluded that piezometer cone penetration testing is particularly suitable for the
geotechnical investigation and the subsequent design of embankments on recent alluvial
deposits and should be considered as complementary to boreholes with sampling and
laboratory testing. The existing database of embankment performance should be expanded
with particular emphasis on long term measurements and on thorough initial determination
of basic soil parameters / Thesis (Ph.D.)-University of Natal, Durban, 1992.
|
9 |
Stochastic underseepage analysis in damsChoot, Gary E. B January 1980 (has links)
Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Civil Engineering, 1980. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Bibliography: leaves 121-123. / by Gary E.B. Choot. / M.S.
|
10 |
Análise por meio de redes neurais artificiais dos dados do monitoramento dos piezômetros da barragem de concreto de Itaipu / Evaluation with Artificial Neural Networks of the monitoring data of the piezometers of Itaipu concrete damMedeiros, Bruno 19 December 2013 (has links)
A Barragem de Itaipu é uma obra de engenharia de grande importância. Localizada na fronteira entre o Brasil e o Paraguai no Rio Paraná e com coordenadas geográficas aproximadas 25°24\'29\"S, 54°35\'21\"O, ela fornece energia elétrica a estes dois países e deve ser constantemente monitorada de modo a manter níveis de qualidade e segurança. Mais de dois mil instrumentos foram instalados e fornecem dados contínuos sobre diversas características da fundação e estrutura da barragem, incluindo mais de 650 piezômetros. A avaliação de níveis piezométricos em barragens é importante, pois refletem os valores de subpressão que atuam na estrutura da barragem. A utilização de novos métodos em tais análises pode permitir agilidade na tomada de decisões por parte da equipe de segurança de barragens. Dependendo do método aplicado, uma melhor compreensão do fenômeno no tempo e espaço pode ser obtida. Este estudo aplica Redes Neurais Artificiais (RNA) para simular o comportamento dos piezômetros instalados em uma descontinuidade geológica na fundação da Barragem de Itaipu. Ele considera diferentes tipos de dados de entrada em uma Rede Neural Multicamadas e determina a melhor arquitetura de RNA que mais se aproxima da situação real. / Itaipu Dam is an engineering work of high importance. Located at the border between Brazil and Paraguay in the Paraná River and with approximated geographical coordinates 25°24\'29\"S, 54°35\'21\"W, it provides electrical energy to these two countries and has to be constantly monitored in order to maintain its levels of quality and security. Over two thousand instruments have been installed and they provide continuous data about several characteristics of the dam foundation and structure, including more than 650 piezometers. The evaluation of piezometric levels in dams is important for it reflects the values of the uplift pressure that acts on the structure of the dam. The utilization of new methods in such an analysis can provide agility to decisions-taking by the security team of the dam. Depending on the method applied, a better comprehension of the phenomenon in time and space may be achieved. This study employs Artificial Neural Networks (ANN) to simulate the behavior of the piezometers installed in a geological discontinuity in the foundation of Itaipu Dam. It considers different types of entry data in a Multilayer Neural Network and determines the best ANN architecture that is closest to the real situation.
|
Page generated in 0.0836 seconds