• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 25
  • 25
  • 16
  • 9
  • 9
  • 9
  • 9
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Towards new catalytic systems for the formation of methyl methacrylate from methyl propanoate

Coetzee, Jacorien January 2011 (has links)
The two stage Lucite Alpha Process for the industrial manufacturing of methyl methacrylate (MMA) represents one of the most efficient technologies currently available for the large scale production of this important chemical commodity. The second stage of this process, which involves the condensation of methyl propanoate (MeP) with formaldehyde over a heterogeneous fixed bed catalyst, however, still shows great scope for improvement. Herein the development of a novel homogeneous catalytic system that would promote the condensation of either propanoic acid or MeP with formaldehyde is explored. Since C–C bond forming reactions which proceed via C–H activation pathways typically display high atom efficiency, our efforts were particularly focussed on employing a functionalisation strategy that is mediated by C–H activation. In the case of propanoic acid, the possibility of achieving regioselective α-methylenation by linking the substrate to phosphorus was evaluated. Thus, a series of acyloxyphosphines and acylphosphites derived from either propionic acid or phenylacetic acid was prepared and, where stability allowed, fully characterised. Some of the resultant simple mixed anhydrides posed problems relating to their stability, and the stabilisation of such ligand systems by using electronic and / or steric effects was therefore explored. In addition, the coordination chemistry and in solution behaviour of Rh(I) and Ru(II) complexes containing these ligands was examined. Similar to the free ligands, complexes derived from these mixed anhydrides rearranged in solution via a number of decomposition pathways, with the specific pathway dependent on the nature of the auxiliary ligands. For most of these complexes, however, ligand decarbonylation was the route of preference for decomposition. Despite the instability of these complexes, a selection of Rh(I) mixed anhydride complexes were assessed for their potential as C-H activation catalysts in reactions aimed at the α-methylenation of saturated carboxylic acids. Furthermore, the stabilisation of Rh(I) mixed anhydride complexes with chelating auxilary ligands, such as bisphosphines or N-substituted diphosphinoamines, was explored. In particular, a series of new Rh(I) mixed anhydride complexes containing dppe, dppb and dppbz as secondary ligands were prepared and the effects of these secondary ligands on the in solution stability of these complexes assessed. As MeP represents the final product in the first stage of the Alpha process and not propanoic acid, the utilisation of PNP iridium pincer complexes in the regioselective sp³ C–H activation of MeP and related esters was also examined. The factors that govern the regioselectivity of such reactions were of great interest to us and, in particular, the effects of water on the reactivity and regioselectivity of these reactions were explored. For MeP, preferential C–H activation of the methoxy group was found to proceed under anhydrous conditions and the catalytic functionalisation of this site with ethene using this activation approach was considered. Formaldehyde, employed in the second stage of the Alpha process, is a difficult substance to manufacture and handle, especially on a large scale. A preliminary study on the in situ production of anhydrous formaldehyde via the catalytic dehydrogenation of methanol was therefore performed. During this study, catalytic systems based on carbonate salts and / or transition metal complexes were considered. In the hope of reducing the number of steps required in the production of MMA, a new one-pot cascade reaction for the indirect α-methylenation of MeP with methanol was developed. Although the production of MMA using this system only proceeded with low efficiency, the obtained results serve as an important proof of concept for future developments in this area. Finally, the capacity of a series of simple bases to catalyse the condensation of MeP with formaldehyde was assessed as part of a fundamental study directed towards determining the factors that govern the efficiency of this reaction. In addition, the extent to which each base effects the deprotonation in the α-position of MeP was determined with the aid of deuterium labelling experiments. Similarly, using sodium propanoate as model base a rough estimate of the kinetics of deprotonation could be made based on the degree of deuterium incorporation over time. These studies suggested that the low efficiency of this condensation reaction is not caused by ineffective deprotonation but rather by the weak nucleophilicity of the generated carbanion. For this reason, attempts to increase the electrophilicity of formaldehyde through Mannich-type condensations reactions involving secondary amine and carboxylic acid additives were made.
22

Complexes pinceurs de cobalt et de nickel : synthèse, caratérisation, réactivité

Lefèvre, Xavier 08 1900 (has links)
Plusieurs nouveaux complexes pinceurs de cobalt et de nickel ont été préparés avec le ligand pinceur de type POCOP : 2,6-(i-Pr2PO)2C6H4. Dans le cas du cobalt, une nouvelle voie de synthèse a été développée. Contrairement au cas du nickel, il s’agit ici de cobalt au degré d’oxydation +III. Les composés obtenus sont paramagnétiques. En outre, le dérivé bromé est instable à la lumière et se décompose en perdant un brome pour former le complexe pinceur de Co(II). La réactivité de ces complexes a été étudiée. Pour ce qui est du nickel, la catalyse de l’hydroamination a été élargie aux dérivés de l’acrylonitrile et aux amines aromatiques. En outre, la réaction d’hydroaryloxylation a été étudiée dans les mêmes conditions. Enfin, avec le 4-cyanostyrène et le cinnamonitrile, la formation d’amidines a été observée. Un complexe pinceur portant cette amidine a été isolé. Enfin, le cation réagit avec des anions fortement coordonnants tels le cyanure ou l’isocyanate. En outre, l’anion triflate peut être déplacé par l’eau, l’acrylonitrile et ses dérivés. Enfin, une réactivité particulière a été observée avec la morpholine, l’acétone et un mélange 1:1 aniline/triéthylamine. / A large variety of new POCOP pincer type complexes of cobalt and nickel have been prepared. All those complexes are based on the following POCOP pincer type ligand: 2,6-(i-Pr2PO)2C6H4 In the case of cobalt, a new synthetic pathway has been developped. Unlike nickel, complexes containing cobalt in the +III oxidation state are obtained, the mechanism of their formation remains unknown. These complexes are paramagnetic. The dibromo derivative is light-sensitive, decomposing by losing a bromine to form the Co(II) pincer complex. The reactivity of those complexes has been studied. Concerning nickel, the catalyzed hydroamination has been extended to the derivates of acrylonitrile, crotonitrile and methacrylonitrile and to aromatic amines. Moreover, hydroaryloxylation reaction has been studied under the same conditions. Finally, amidines formation was obtained with 4-cyanostyrene and with cinnamonitrile. A pincer complex bearing this amidine moiety has been isolated. The cationic complex reacts with strong coordinating anions like cyanide and isocyanate. Moreover, the triflate anion is displaced by water, acrylonitrile and acrylonitrile derivates. Finally, a particular reactivity has been observed with morpholine, acetone and a 1:1 mixture of aniline and triethylamine.
23

Préparation, caractérisation et étude de réactivité de complexes de nickel comportant un ligand de type "pincer"

Castonguay, Annie January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
24

Cyclonickellation des phosphinites dérivées de phénols et naphtols : r égiosélectivité, mécanisme, fonctionnalisation et formation de nouveaux pinceurs

Mangin, Loïc P. 12 1900 (has links)
Cette thèse présente différents aspects de la cyclonickellation des phosphinites de type Aryl-OP(i-Pr)2, leur potentiel dans la fonctionnalisation et leur utilité pour former des nouveaux types de complexes de types pincer de nickel. Le Chapitre 1 constitue une introduction générale sur l’importance de la liaison carbone-nickel en chimie organométallique. Diverses stratégies de formation des liens C-Ni dans des composés classiques (monodentés), des composés de types pincer (tridentés) et des composé cyclonickellés (bidentés et tridentés) y sont présentées, incluant des réactions impliquant des précurseurs de Ni0, de NiII ou de NiIV. Ce chapitre présente également la réactivité de ces composés comportant des liens C-Ni, et met l’emphase sur la réactivité des liaisons carbone-nickel, en particulier dans les processus catalytiques destinés à la fonctionnalisation des liens C-H, en utilisant des groupes directeurs. Les phosphinites sont ensuite présentées comme des groupes directeurs intéressants en catalyse, bien qu’elles aient surtout été utilisé avec d’autres métaux que le nickel. La dernière partie de ce chapitre pose les questions qui tenterons de trouver réponse dans les travaux présentés aux chapitres suivants. Les Chapitres 2 et 4, basés sur des articles publiés, présentent l’isolation et la caractérisation de composés dimériques de type [{κP,κC-(i-Pr)2POAr}Ni(μ-Br)]2 issus de l’ortho-nickellation des phosphinites dérivées des phénols et des naphtols substitués, ainsi que de certains de leurs adduits monomériques d’acétonitrile ou du ligand lui-même. Ces discussions cherchent à répondre à la question de régiosélectivité de la cyclonickellation : on y démontre que cette réaction est gouvernée par les facteurs stériques, menant à la métallation préférablement (pour les substituants fluor) ou exclusivement (pour les substituants plus volumineux) aux carbones les moins encombrés, lorsque deux positions ortho sont disponibles, et que la réaction mène toujours à la formation de nickellacycles à 5 chainons. Ainsi, les phénols C3-substitués subissent la métallation au carbone C6, alors que les 1- et 2-naphtols subissent la nickellation aux positions C2 et C3, respectivement. Ces deux chapitres démontrent que la métallation peut avoir lieu sur des carbones qui possèdent déjà un voisin encombrant (F, OMe, benzo), menant à des structures relativement distordues, mais que la nickellation n’est pas produite dans les conditions standard au voisinage des substituants Me et Cl qui sont plus volumineux, ni au carbone C8 du 1-naphtol qui mènerait à un nickellacycle à 6 chainons. L’étude structurale permet de rationaliser les régiosélectivités observées, et les études par diverses méthodes RMN complètent la caractérisation de ces nouveaux composés. Le Chapitre 2 démontre que lorsque les sites potentiels de nickellation sont bloqués par des substituants ortho Me ou Ph, la réaction ne prend pas place sur ces substituants en raison de la formation de nickellacycles à 6 ou 7 chainons respectivement. Ceci met en lumière également l’impossibilité d’isoler les composés nickellés aux carbones sp³ des substituants ortho, et le Chapitre 4 démontre par des expériences d’échange H/D que la nickellation à ces positions n’est pas seulement thermodynamiquement défavorisée, mais qu’elle est aussi cinétiquement inexistante. Ce chapitre dévoile également les réactions qui sont observables à 80 °C sont radicalement accélérées à haute température (120 ou 160 °C), et que les produits de nickellation y sont thermodynamiquement stables. Le Chapitre 4 présente également une réaction de fonctionnalisation in situ des liens carbone-nickel de la phosphinite cyclonickellée dérivée du 1-naphthol. Dans cette réaction, qui se produit à haute température en absence de base, la bromophosphine Br-P(i-Pr)2 se génère in situ et permet l’insertion formelle d’un phosphènium [(i-Pr)2P]+ dans le lien carbone-nickel, menant à un complexe phosphine-phosphinite de type {κP,κP’-1-(i-Pr)2PO-2-naphtyl-P(i-Pr)2}NiBr2. Lorsque la position C2 du 1-naphtol est bloquée par un substituant Et, un genre similaire de fonctionnalisation à la position C8 est observé, menant à l’obtention de 8-(i-Pr)2P(O)-2-Et-1-naphtol, ainsi qu’à des sous-produits qui ont été identifiés et caractérisés. Cette réaction démontre l’accessibilité cinétique de la position C8 à haute température, mais démontre également l’instabilité du nickellaycle généré. Les conditions réactionnelles pour l’obtention des phosphinites nickellées dévoilées au Chapitre 2 (utilisant l’acétonitrile comme solvant) ont démontré une efficacité supérieure que celle présentée précédemment (dans le toluène). Ainsi, le Chapitre 3, également basé sur un article publié, cherche à décrire les aspects mécanistiques de cette cyclométallation et démontre que les espèces initialement présentes dans l’acétonitrile sont des adduits mono-phosphinites du nickel au contraire des espèces présentes dans le toluène. Cette étude démontre qu’une base externe est nécessaire pour conduire à l’isolation des composés nickellés, mais qu’elle n’est pas impliquée dans le mécanisme de métallation car la formation des liens C-Ni se produit réversiblement en absence de base. Des suivis cinétiques indiquent que la réaction est de premier ordre et qu’un excès de base ralentit la réaction en formant des espèces non réactives, et que les bases idéales sont fortes et peu coordonnantes. Une étude mécanistique expérimentale révèle que l’étape de nickellation est de nature électrophile (pente de Hammett ρ ≈ –4) et associative (ΔH⧧ = 18(1) kcal·mol–1 and ΔS⧧ = −27(4) cal·mol–1·K–1) et que le transfert de proton est l’étape limitante (kH/kD ≈ 11). Ces résultats sont appuyés par une étude computationnelle par DFT qui démontre que la dissociation d’un ligand Br- mène à une paire d’ions comme intermédiaire, depuis lequel la déprotonation est réalisée par l’anion Br- dans un mécanisme de type CMD. Les résultats de ces calculs théoriques permettent également d’appuyer la thèse d’un état fondamental triplet pour les espèces présentes avant la nickellation dans l’acétonitrile. Les études sur la régiosélectivité ont mené à un résultat surprenant : à la place de subir la nickellation C-H, la phosphinite dérivée du 2-vinylphénol subit une attaque nucléophile sur le groupe vinyle afin de donner un composé tridenté portant un lien Csp³-Ni. Le Chapitre 5 présente ainsi une nouvelle stratégie de préparation des composés pincers par des réactions de type Umpolung. Le ligand 2-vinylphényl-OP(i-Pr)2 réagit avec des amines et des phosphines portant au moins un proton, pour donner des complexes pinceurs de type 6,4-POCY-NiBr (Y = P, N). Ce chapitre dévoile l’étendue des composés qui peuvent être produits par cette méthode, et offre une caractérisation de ces composés par RMN, diffraction des rayons X et par électrochimie, afin de comparer leurs caractéristiques avec les autres pincers décrits dans la littérature. Enfin, alors que le Chapitre 6 présente quelques résultats additionnels reliés aux divers axes de recherche de cette thèse, le Chapitre 7 rappelle les grandes lignes des découvertes présentées aux Chapitres 2-5. Ce chapitre de conclusion générale présente également des perspectives basées sur les résultats de la thèse, et sur les quelques résultats préliminaires. Au menu : une discussion sur la relation entre régiosélectivité et la stabilité, des nouvelles stratégies de nickellation à étudier (à partir de liens carbone-halogène), la fonctionnalisation des liens C-Ni par des composés isolobaux aux phosphèniums et des stratégies pour la fonctionnalisation des oléfines dans les composés de type alcool. / This thesis presents various aspects of the cyclonickelation of phosphinites Aryl-OP(i-Pr)2, as well as their potential in functionalization processes and applications in the preparation of new types of pincer-Ni complexes. Chapter 1 consists of a general introduction on the importance of the carbon-nickel bond in organometallic chemistry. Various strategies leading to C-Ni bonds in classical (monodentate) compounds, pincer complexes (tridentate), and cyclonickelated species (bi- and tridentate) are disclosed, including reactions implicating Ni0, de NiII ou de NiIV precursors. This chapter also presents the reactivity of species featuring C-Ni bonds C-Ni and underlines the reactivity of C-Ni bonds, especially in catalytic processes targeting C-H bonds functionalization, through the use of directing groups. Next, phosphinites are displayed as interesting directing groups in catalysis even though they have been used mostly with metals other than nickel. The last part of this chapter outlines the questions that are meant to be addressed in the next chapters. Chapters 2 and 4, based on published articles, display the isolation and characterization of dimeric complexes of the type [{κP,κC-(i-Pr)2POAr}Ni(μ-Br)]2 arising from the ortho-nickelation of phosphinites derived from substituted phenols and naphthols, as well as some of their acetonitrile or phosphinite adducts. These studies are meant to address the question of regioselectivity in the cyclonickelation. The results obtained prove that when two ortho sites are available for reactivity, the nickelation is governed by steric factors and leads to metalation preferably (in case of F substituents) or exclusively (in case of larger substituents) at the least hidered C-H bond; moreover, the nickelation always leads to 5-membered nickelacycles. Thus, C3-substituted phenols undergo nickelation at the C6 position, while 1- and 2-naphthols undergo nickelation at C2 and C3 positions, respectively. Together, Chapters 2 and 4 show that metalation can take place at the carbon next to a F-, MeO- or benzo substituent, but such nickelation at the hindered sites leads to distorted structures in the products. One the other hand, nickelation never occurs at carbons neighbouring the larger Me- or Cl- substituents, nor at the C8 position of 1-naphthol which would lead to a 6-membered nickelacycle. The structural study allows us to rationalize the observed regioselectivities, and NMR studies complete the characterization of these new compounds. Chapter 2 also reveals that when the ortho sites are blocked by Me or Ph functional groups, no nickelation takes places on these substituents due to the unfavored generation of 6- or 7-membered metallacycles, respectively. This finding also rationalizes why it has not been possible to isolate complexes arising from the nickelation at sp³ carbons of ortho substituents. This point is confirmed in the studies described in Chapter 4, which shows how H/D exchange experiments helped us prove that reactivity at these aliphatic C-H sites is disfavored not only thermodynamically, but also kinetically. This chapter also reveals that reactions observed at 80 °C can be accelerated dramatically at higher temperatures (120 or 160 °C), and that nickelated products are stable in these conditions. Chapter 4 also presents some examples of in situ functionalization of the C-Ni bonds in cyclonickelated 1-naphthyl phosphinites. Conducting these reactions in the absence of base at high temperatures allowed the in situ generation of bromoposphine, Br-P(i-Pr)2, that promotes the formal insertion of a phosphenium fragment [(i-Pr)2P]+ into the C-Ni bond, thus leading to a phosphine-phosphinite complex of Ni, of the following formula: {κP,κP’-1-(i-Pr)2PO-2-naphtyl-P(i-Pr)2}NiBr2. When the C2 position in the naphthyl phosphinite is blocked by an Et substituent, a similar functionalization occurs at the C8 position leading to 8-(i-Pr)2P(O)-2-Et-1-naphtol, along with by-products which have been identified and characterized. These findings demonstrated the kinetic accessibility of the C8 position at high temperatures, while proving the instability of the generated nickelacycle. The reaction conditions used for the syntheses of cyclonickelated phosphinites displayed in Chapter 2 (using acetonitrile as the solvent) have been proven more efficient than that previously reported (in toluene). Thus, Chapter 3, also based on a published article, describes the mechanistic aspects of the new procedure and reveals that acetonitrile generates more reactive species at the pre-nickelation stage, namely mono-phosphinite nickel adducts, as opposed to the bis-phosphinite nickel complexes observed in toluene. This study demonstrates that an external base is required for isolating the nickelated complexes, but that this base is not implicated in the metalation process, since the formation of the C-Ni bond occurs reversibly in the absence of base. Kinetic monitoring reveals that the reaction is 1st order and that an excess of base in fact slows down the rate by generating non-reactive species. Ideal bases for the nickelation are thus strong bases but weakly coordinating nucleophiles. An experiment-based mechanistic investigation shows that the nickelation is of electrophilic (Hammett slope ρ ≈ –4) and associative (ΔH⧧ = 18(1) kcal·mol–1 and ΔS⧧ = −27(4) cal·mol–1·K–1) nature, and that the proton transfer is rate limiting (kH/kD ≈ 11). These results are supported by a DFT-based computational study that points towards an ion pair formation that allows the dissociated Br- anion to capture the proton, in a CMD mechanism. The theoretical calculation also supported a triplet ground state in acetonitrile for the species present in the pre-nickelation mixture in acetonitrile. Regioselectivity studies of a phosphinite bearing an ortho-vinyl substituent led to a surprising finding: instead of undergoing C-H nickelation, the phosphinite derived from 2-vinylphenol is attacked by nucleophiles on the vinyl moiety and give a Ni complex featuring a tridentate pincer-type ligand with a central Csp³-Ni bond. Chapter 5 thus discloses a new Umpolung-based strategy leading to new pincer complexes. Reaction of the ligand 2-vinylphenyl-OP(i-Pr)2 with primary or secondary amines and phosphines produces novel pincer-Ni complexes of the type 6,4-POCsp3Y-NiBr (Y = P, N). This chapter discloses the variety of new complexes that can be prepared by this new synthetic strategy. The characterisation of the new complexes by NMR, XRD and electrochemical analysis allowed us to compare their structural and redox properties to pincer-Ni complexes reported in the literature. While Chapter 6 discloses additional results related to various research axes of this thesis, Chapter 7 recalls the main findings revealed in Chapters 2-5. This conclusion also discloses research perspectives based on the results presented in this thesis, as well as phosphinite-related preliminary results gathered during my Ph. D. studies. The main proposed ideas touch on the following aspects: (a) the relationship between regioselectivity and stability towards functionalization; (b) new nickelation strategies based on the metalation of carbon-halogen bonds; (c) C-Ni functionalization by isolobal compounds to phosphenium ions; and (d) strategies towards the functionalization of alcohols bearing alkene moieties.
25

Complexes cationiques POCOP de nickel : synthèse, caractérisation, réactivité et étude catalytique

Lapointe, Sébastien 06 1900 (has links)
Ce mémoire traite de la chimie des complexes pinceurs de nickel (II) cationiques ayant un ligand de type POCOP. Elle se divise en deux parties. La première traite de la synthèse, de la caractérisation et de la réactivité des complexes cationiques pinceurs de Ni(II) de type POCOP (POCOP = 1,3-bis(phosphinitobenzene), où C fait partie d’un cycle benzénique et est lié au métal, et P est un ligand phosphoré aussi lié au métal). Ces complexes ont un ligand acétonitrile coordonné au centre métallique et sont du type [(R-POCOPR’)Ni(NCMe)][OSO2CF3], où R est un substituant du cycle benzénique et R’ est un substituant sur le ligand phosphoré (R’ = iPr: R = H (1), p-Me(2), p-OMe(3), p-CO2Me(4), p-Br(5), m,m-tBu2(6), m-OMe(7), m-CO2Me(8); R’ = t-Bu : R = H (9), p-CO2Me(10)). Les complexes cationiques sont préparés en faisant réagir le dérivé Ni(II) neutre correspondant R-(POCOPR’)Ni-Br avec Ag(OSO2CF3¬) dans l’acétonitrile à température ambiante. L’impact des groupements R et R’ du ligand POCOP sur la structure et sur les propriétées électroniques du complexe a été étudié par spectroscopies RMN, UV-VIS et IR, analyse électrochimique, et diffraction des rayons X. Les valeurs de fréquence du lien C≡N (ν(C≡N)) augmentent avec le caractère électroattracteur du complexe, dans l’ordre 7 < 3 ~ 2 ~ 6 < 1 < 5 ~ 8 < 4 et 9 < 10. Ces résultats sont en accord avec le fait qu’une augmentation du caractère électrophile du centre métallique devrait résulter en une augmentation de la donation σ MeCN→Ni. De plus, les complexes cationiques montrent tous un potentiel d’oxydation Ni(II)/Ni(III) plus élevé que leurs analogues neutres Ni-Br. Ensuite, une étude d’équilibre entre un complexe neutre (R-POCOPR’)NiBr et un complexe cationique [(R-POCOPR’)Ni(NCMe)][OSO2CF3] démontre l’échange facile des ligands MeCN et Br. La deuxième partie de ce mémoire consiste en deux chapitres. Le premier (Chapitre 3) est une étude structurelle permettant une meilleure compréhension du mécanisme d’hydroamination des oléfines activées promue par les complexes présentés au chapitre 1, suivi de tentatives de synthèse de nouveaux composés POCOP cationiques comportant un ligand amine et nitrile, et de déplacement du groupement amine par un groupement nitrile. Le deuxième chapitre (4) décrit la réactivité et la cinétique de la réaction d’hydroamination et d’hydroalkoxylation d’oléfines activées, qui permet ainsi de mieux comprendre l’impact des différentes variables du système (groupements R et R’, température, substrats, solvent, etc.) sur la réactivité catalytique. / This thesis describes the chemistry of nickel (II) cationic pincer complexes bearing a POCOP ligand. The content is divided into two parts. The first part (chapter 2) concerns the synthesis, characterization and reactivities of nickel (II) cationic POCOP pincer complexes with an acetonitrile ligand coordinated to the metal center via the nitrile moiety, [(R-POCOPR’)Ni(NCMe)][OSO2CF3] where R is a ring substituent and R’ is a P-substituent (R’ = iPr : R = H (1), p-Me(2), p-OMe(3), p-CO2Me(4), p-Br(5), m,m-tBu2(6), m-OMe(7), m-CO2Me(8); R’ = t-Bu : R = H (9), p-CO2Me(10)). The cationic complexes are synthetized by reacting the neutral nickel (II) bromide derivatives R-(POCOPR’)Ni-Br with Ag(OSO2CF3) in acetonitrile at room temperature. The impact of R and R’ groups of the POCOP ligand on the structure and electronic proprieties of the complexes has been studied by NMR, UV-Vis and IR spectroscopy, as well as by single crystal x-ray diffraction studies and cyclic voltammetry measurements. The observed ν(C≡N) values were found to increase with the increasing electron-withdrawing nature of R, i.e., in the order 7 < 3 ~ 2 ~ 6 < 1 < 5 ~ 8 < 4 and 9 < 10. This trend is consistent with the anticipation that enhanced electrophilicity of the nickel center should result in an increase in net MeCN→Ni σ-donation. It is also interesting to note that all cationic complexes show a much higher Ni(II)/Ni(III) oxidation potential than their neutral Ni-Br analogues. Following this, an equilibrium study is presented that shows the facile exchange of the MeCN/Br ligands between the charge-neutral and cationic complexes (R-POCOPR’)NiBr and [(R-POCOPR’)Ni(NCMe)][OSO2CF3]. The second part of this thesis consists of two chapters describing, respectively, structural studies that are relevant to our understanding of the mechanism of hydroamination reactions promoted by the title complexes (chapter 3), and reactivity and kinetic studies aimed at understanding the impact of different variables (R and R’; temperature; substrates; solvent; etc.) on the Michael-type hydroamination and hydroalkoxylation of acrylonitrile and its substituted derivatives (chapter 4). Chapter 3 will also discuss the attempted synthesis of new amine and nitrile POCOP cationic and neutral complexes, as well as the facile displacement of the amine moiety by a nitrile.

Page generated in 0.0684 seconds