• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Calibração física do sistema fotométrico CBVRIj

Storchi-Bergmann, Thaisa January 1980 (has links)
Utilizando observações de 327 estrelas, na sua maioria gigantes de tipos espectrais G e K, tenta-se obter uma calibração empírica para o sistema fotométrico CBVRIj. Este é um sistema de banda larga, que permite observações de estrelas mesmo fora da Galáxia. / Observations of 327 stars, mostly giants of spectral types G and K, are used in the search of an empirical calibration to the CBVRIj photometric system. This is a wide band system, which allows observations of stars even out of the galaxy.
2

Calibração física do sistema fotométrico CBVRIj

Storchi-Bergmann, Thaisa January 1980 (has links)
Utilizando observações de 327 estrelas, na sua maioria gigantes de tipos espectrais G e K, tenta-se obter uma calibração empírica para o sistema fotométrico CBVRIj. Este é um sistema de banda larga, que permite observações de estrelas mesmo fora da Galáxia. / Observations of 327 stars, mostly giants of spectral types G and K, are used in the search of an empirical calibration to the CBVRIj photometric system. This is a wide band system, which allows observations of stars even out of the galaxy.
3

Calibração física do sistema fotométrico CBVRIj

Storchi-Bergmann, Thaisa January 1980 (has links)
Utilizando observações de 327 estrelas, na sua maioria gigantes de tipos espectrais G e K, tenta-se obter uma calibração empírica para o sistema fotométrico CBVRIj. Este é um sistema de banda larga, que permite observações de estrelas mesmo fora da Galáxia. / Observations of 327 stars, mostly giants of spectral types G and K, are used in the search of an empirical calibration to the CBVRIj photometric system. This is a wide band system, which allows observations of stars even out of the galaxy.
4

Hydrodynamical simulations of dust traps in protoplanetary disks

Barraza Alfaro, Marcelo Fernando January 2018 (has links)
Magíster en Ciencias, Mención Astronomía / Las teorías actuales de formación planetaria concuerdan que los planetas se forman dentro de discos de gas y polvo alrededor de una estrella jóven. Sin embargo, no es claro cuál es el mecanismo detrás de la formación planetaria. Entre los mecanismos propuestos podemos encontrar que se podrían formar debido al colapso gravitacional, y de un núcleo masivo el cual acreta material. En el escenario de acreción de núcleo el polvo debe crecer varios ordenes de magnitud de manera eficiente. Un lugar en el disco en que el polvo logra concentrarse por un largo tiempo y crecer rápidamente son las llamadas 'trampas de polvo'. De manera interesante, los planetas podrían interactuar con el disco generando cavidades en él, la cual da el paso a la formación de una trampa de polvo debido a un máximo local de presión. Esto abre la posibilidad a la creación de una nueva generación de planetas. En el presente trabajo se estudia el escenario de formación de trampas de polvo debido a interacciones entre el disco y planetas para el disco protoplanetario alrededor de la estrella jóven MWC 758, el cual presenta indicios de la presencia de trampas de polvo. Nuevas observaciones realizadas con los radiotelescopios ALMA y VLA apoyan la existencia de dos 'trampas de polvo' en MWC 758. Por medio de simulaciones hidrodinámicas en dos dimensiones, las cuales incluyen el gas y polvo del disco, post-procesadas con cálculos de transferencia radiativa, se demuestra que las espirales observadas en luz de scattering y las dos concentraciones de emisión observadas en el rango (sub)milimétrico pueden ser causadas por dos planetas gigantes: un planeta de la masa de Júpiter a ~ 33 au (interior a las espirales) y un planeta de 5 masas de Júpiter a ~ 33 au de la estrella central (exterior a las espirales). El planeta externo desencadena la formación de varios brazos espirales que logran dar cuenta de algunas de las espirales observadas. Además forma un vórtice al borde interior de la cavidad que genera en la densidad del gas (a ~ 80 au), cuya emisión en el continuo termal encaja con las observaciones previas de ALMA y VLA, esto si se asume que el polvo está compuesto por granos porosos (con una densidad interna de ~ 0.1 g cm^-3 y de tamaños de hasta 1 cm. El planeta interno menos masivo forma un vórtice al borde externo de la cavidad que genera en el gas (a ~ 47 au), el que decae más rápido que el vórtice inducido por el planeta externo, como resultado de la viscosidad turbulenta del disco. La pérdida de eficiencia en atrapar el polvo de manera azimutal que se produce en el vórtice decayendo puede reproducir la baja señal y mayor extensión observadas en las imágenes VLA de esta trampa de polvo. Para poder confirmar el escenario propuesto en el presente trabajo aún es necesario encontrar de manera directa los posibles planetas, por ejemplo, encontrando su emisión termal o efectos en la cinemática del gas. / Este trabajo ha sido parcialmente financiado por Millennium Nucleus "Protoplanetary Disks in ALMA Early Science", Beca CONICYT-PFCHA/Magíster Nacional/2017-22171601, FONDECYT Regular 1171624 y Departamento de Postgrado y Postítulo de la Vicerrectoría de Asuntos Académicos de la Universidad de Chile. Powered@NLHPC: Esta investigación fue parcialmente apoyada por la infraestructura de supercómputo del NLHPC (ECM-02)
5

A Molécula H2 em Nebulosas Planetárias / Molecular Hydrogen in Planetary Nebulae

Aleman, Isabel Regina Guerra 21 June 2002 (has links)
O objetivo deste trabalho é o estudo das condições de existência e a determinação da concentração da molécula H2 em diferentes condições típicas de nebulosas planetárias, dentro da região ionizada. Para este cálculo, desenvolvemos sub-rotinas computacionais que se acoplam ao código de fotoionização unidimensional Aangaba que, até agora, somente considerava espécies atômicas (H, He, C, N, O, Mg, Ne, Si, S, Ar, Cl e Fe) e seus íons. Inserimos nesse código os equilíbrios químico e de ionização envolvendo a molécula H2 e os demais compostos de hidrogênio, H-, H2+, H3+, além do H, H+ e dos elétrons que o código de fotoionização Aangaba já considerava em sua forma original. A molécula H3 não é considerada por ser instável. Levamos em conta 41 diferentes mecanismos de formação e destruição desses compostos do hidrogênio. Destacamos particularmente o efeito da reação de formação de H2 na superfície de grãos na produção global dessa molécula em nebulosas planetárias, considerada na literatura como a rota mais importante de formação dessa molécula no meio interestelar. Para isso, estudamos a possibilidade da sobrevivência de grãos dentro da região ionizada da nebulosa planetária. Analisamos também a influência das propriedades da estrela central e da densidade do gás, assim como das propriedades dos grãos astrofísicos, na concentração de H2. Demonstramos que quantidades significativas de H2 podem sobreviver dentro da região ionizada de nebulosas planetárias, principalmente na região de recombinação do hidrogênio. A concentração de H2 relativa à densidade total de H alcança valores de até 1E-4 e a razão entre a massa de H2 e a massa total de H da NP chega a valores de 4E-4. Verificamos que a razão entre a massa de H2 e a massa de H total da nebulosa aumenta significativamente com o aumento da temperatura de estrela central. Essa maior quantidade de H2 em nebulosas planetárias com estrela central mais quente pode explicar porque é mais comum encontrar emissão da molécula H2 em nebulosas planetárias com estrutura bipolar (regra de Gatley), já que nebulosas com esse tipo morfológico têm estrela central tipicamente mais quente. Na literatura, o valor 6,9E-5 é obtido para a razão entre a massa de H2 e a massa de H total da nebulosa planetária NGC 6720, a partir de dados observacionais. Usando os mesmos parâmetros deste artigo, calculamos com o código de fotoionização Aangaba o valor de 3,3E-5, que está razoavelmente próximo do valor da literatura. / The goal of this work is the study of the H2 molecule survival and the determination of its abundance in different typical planetary nebulae conditions inside the ionized region. In order to do these calculations, we developed Fortran subroutines for the Aangaba one-dimensional photoionization code that, until this work, only took into account the atomic species (H, He, C, N, O, Mg, Ne, Si, S, Ar, Cl, and Fe) and their ions. Ionization and chemical equilibria of H, H+, H-, H2, H2+, and H3+ are assumed. The H3 molecule is not included because it is unstable. Fortyone different reactions that could form and destroy these species are taken into account. Reaction on grain surfaces, the most important mechanism for the production of H2 molecules in the interstellar medium, is analyzed in detail in the conditions of planetary nebulae ionized regions. We make a careful analysis of the grain survival in these regions. We also study the influence of the central star properties and gas density, as well as the astrophysical grain properties in the obtained H2 concentration. It is shown that a significant concentration of H2 can exist inside the ionized region of planetary nebulae, mostly in the recombination zone. The H2 concentration relative to the total hydrogen concentration reaches values as high as 1E-4 and the H2 mass to total hydrogen mass ratio inside the ionized region reaches values as high as 4E-4. The ratio increases with increasing temperature. This fact can explain why the H2 emission is more often observed in bipolar planetary nebulae (Gatley?s rule), since this kind of object has typically hotter stars. In the literature a H2 mass to total hydrogen mass ratio equal to 6.9E-5 is estimated from observations for the planetary nebula NGC6720. With the same input parameters for the gas density and the stellar spectrum, we calculated a ratio equal to 3.3E-5, close to the observed value.
6

A Molécula H2 em Nebulosas Planetárias / Molecular Hydrogen in Planetary Nebulae

Isabel Regina Guerra Aleman 21 June 2002 (has links)
O objetivo deste trabalho é o estudo das condições de existência e a determinação da concentração da molécula H2 em diferentes condições típicas de nebulosas planetárias, dentro da região ionizada. Para este cálculo, desenvolvemos sub-rotinas computacionais que se acoplam ao código de fotoionização unidimensional Aangaba que, até agora, somente considerava espécies atômicas (H, He, C, N, O, Mg, Ne, Si, S, Ar, Cl e Fe) e seus íons. Inserimos nesse código os equilíbrios químico e de ionização envolvendo a molécula H2 e os demais compostos de hidrogênio, H-, H2+, H3+, além do H, H+ e dos elétrons que o código de fotoionização Aangaba já considerava em sua forma original. A molécula H3 não é considerada por ser instável. Levamos em conta 41 diferentes mecanismos de formação e destruição desses compostos do hidrogênio. Destacamos particularmente o efeito da reação de formação de H2 na superfície de grãos na produção global dessa molécula em nebulosas planetárias, considerada na literatura como a rota mais importante de formação dessa molécula no meio interestelar. Para isso, estudamos a possibilidade da sobrevivência de grãos dentro da região ionizada da nebulosa planetária. Analisamos também a influência das propriedades da estrela central e da densidade do gás, assim como das propriedades dos grãos astrofísicos, na concentração de H2. Demonstramos que quantidades significativas de H2 podem sobreviver dentro da região ionizada de nebulosas planetárias, principalmente na região de recombinação do hidrogênio. A concentração de H2 relativa à densidade total de H alcança valores de até 1E-4 e a razão entre a massa de H2 e a massa total de H da NP chega a valores de 4E-4. Verificamos que a razão entre a massa de H2 e a massa de H total da nebulosa aumenta significativamente com o aumento da temperatura de estrela central. Essa maior quantidade de H2 em nebulosas planetárias com estrela central mais quente pode explicar porque é mais comum encontrar emissão da molécula H2 em nebulosas planetárias com estrutura bipolar (regra de Gatley), já que nebulosas com esse tipo morfológico têm estrela central tipicamente mais quente. Na literatura, o valor 6,9E-5 é obtido para a razão entre a massa de H2 e a massa de H total da nebulosa planetária NGC 6720, a partir de dados observacionais. Usando os mesmos parâmetros deste artigo, calculamos com o código de fotoionização Aangaba o valor de 3,3E-5, que está razoavelmente próximo do valor da literatura. / The goal of this work is the study of the H2 molecule survival and the determination of its abundance in different typical planetary nebulae conditions inside the ionized region. In order to do these calculations, we developed Fortran subroutines for the Aangaba one-dimensional photoionization code that, until this work, only took into account the atomic species (H, He, C, N, O, Mg, Ne, Si, S, Ar, Cl, and Fe) and their ions. Ionization and chemical equilibria of H, H+, H-, H2, H2+, and H3+ are assumed. The H3 molecule is not included because it is unstable. Fortyone different reactions that could form and destroy these species are taken into account. Reaction on grain surfaces, the most important mechanism for the production of H2 molecules in the interstellar medium, is analyzed in detail in the conditions of planetary nebulae ionized regions. We make a careful analysis of the grain survival in these regions. We also study the influence of the central star properties and gas density, as well as the astrophysical grain properties in the obtained H2 concentration. It is shown that a significant concentration of H2 can exist inside the ionized region of planetary nebulae, mostly in the recombination zone. The H2 concentration relative to the total hydrogen concentration reaches values as high as 1E-4 and the H2 mass to total hydrogen mass ratio inside the ionized region reaches values as high as 4E-4. The ratio increases with increasing temperature. This fact can explain why the H2 emission is more often observed in bipolar planetary nebulae (Gatley?s rule), since this kind of object has typically hotter stars. In the literature a H2 mass to total hydrogen mass ratio equal to 6.9E-5 is estimated from observations for the planetary nebula NGC6720. With the same input parameters for the gas density and the stellar spectrum, we calculated a ratio equal to 3.3E-5, close to the observed value.

Page generated in 0.1863 seconds