1 |
The application of non-monotonic reasoning to the problem of component selectionSeddon, Andrew P. January 1995 (has links)
No description available.
|
2 |
Economic trade-offs in process designDrage, Michael John January 1992 (has links)
No description available.
|
3 |
Heat integration between areas of integrityHui, Chi Wai January 1991 (has links)
No description available.
|
4 |
An integrated architecture for operating procedure synthesisSoutter, James January 1996 (has links)
The task of creating the operating procedures for a processing plant is time consuming and requires the involvement of key members of the design team. As one of the consequences, the writing of operating procedures is often put off till the final stages of the design process. However, some operability problems will remain hidden in the design until the operating procedure is considered. These problems are expensive to fix because they require undoing some of the design decisions that have already been made. This thesis reports on research into the automatic creation of operating procedures, a field of research sometimes called Operating Procedure Synthesis (OPS). One motivation for OPS research is to develop a tool that can detect operability problems in the design of a plant and thus allow operability problems to be considered earlier in the design process reducing the cost of resolving these problems. Previous OPS systems are generally based around single techniques such as mixed integer linear programming. All the techniques that have been examined in the past are strong in some aspects of OPS and weak in some other aspects. There is no single technique that is strong in all areas of OPS. As a result, no previous OPS system is able to generate all the procedures used as examples in the OPS literature. This thesis presents a new approach to OPS. In this approach, OPS is viewed as a set of distinct but related subtasks. Three subtasks have been identified and examined in this work, namely planning, safety and valve sequencing. Algorithms have been developed to address each of these three subtasks individually. These algorithms have been integrated to form a single OPS system by using a common representation of the operating procedure to be created.
|
5 |
COSMOD A COMPUTERISED CAPITAL COST ESTIMATING SYSTEMAHMED, SYED IFTIKHAR 12 1900 (has links)
A computerised cost estimating system, which can be used for making preliminary estimates of fixed capital investment of process plants, has been developed. The contituents of the system are
(1)
a cost calculating routine, COSMOD, compatible with existing modular executive programs, such as GEMCS,
(2)
an equipment data base, and
(3)
an equipment catalogue.
The following are the significant characteristics of the cost estimating system.It has flexibility. It can be used as an independent cost estimating system, or as part of a modular executive-aided computer program. As part of an executive aided system, it may be used as a subroutine to a 'module* or 'unit computation', or as a 'module' or 'unit computation' itself.
It will estimate the cost of one or more equipment but is capable of accepting costs generated external to itself.
It requires relatively little computer space and time. The COSMOD program is concise and efficient. Its common block requirements in executive-aided systems is small. It adds little to the cost or time of running equipment design cases on the computer.
It has access to a large quantity of data on equipment costs. Its data base contains cost information on nearly 300 different types of equipment, ensuring satisfactory fulfilment of its varying and often complex data requirements.
The data are organised in a multiple record, random access file. This allows direct access to the equipment data of interest. It also allows easy addition, deletion or change to the data on file.
An equipment catalogue is provided for the user. It provides information about the equipment whose cost data are available in COSMOD*s data file, and serves as a guide for the user in selecting and in providing data required by COSMOD.
In conclusion, this work makes available, complete with cost estimating data and equipment catalogue, a preliminary capital cost estimating system, the absence of which has discouraged or impeded economic evaluations in plant design studies on the computer. / Thesis / Master of Engineering (ME)
|
6 |
Posouzení softwaru Smap3D při návrhu odpařovací technologie / Evaluation of Smap3D software as a tool for design of evaporation systemOdstrčil, Marek January 2021 (has links)
The main goal of the master thesis is an evaluation of a software package Smap 3D Plant Design in design of evaporation technology, specifically 3D of the pipeline network and its subsequent documentation. The thesis describes evaporation technology in general, then the evaporator testing site in Laboratory of Energy Intensive Processes in NETME Centre is presented, where pipeline network needs to be designed. In the next part a reference 3D model was created as well as a documentation using SolidWorks routing. Subsequently, an equivalent 3D model was created using Smap 3D Plant Design – Piping and a documentation was created using Smap 3D Plant Design – Isometric. Finally, these two methods of creating pipeline were compared to each other, and recommended method was chosen.
|
7 |
Návrh bioplynové stanice / Biogas plant designKocián, Oldřich January 2009 (has links)
The diploma thesis is focused on possibility of usage biologically decompostable wastes in the biogas plant. The first part of this thesis describes principal production of the manure gas and as well concrete biogas plants, where are shown different approaches and technologies. The main target of the thesis is based on biogas plant design for manipulation with biologically communal wastes from VUT v Brno and chosen parts of Brno. To the proper design of the biogas plant precede evaluation of accesible wastes from choosen localities. Since we consider wastes from households, the way of collection of those wastes is designed. The thesis also consider economic balance and assesment of the biogas plant. Investment costs are predicted, process costs are evaluated and as well profit from selling of the electric energy is consider, profits from charges for manipulation with wastes and profits from selling of compost.
|
8 |
Zásady a navrhování projekčních zpracování kotelních ostrovů se zaměřením na potrubí / Principles and design of project elaboration of boiler islands aimed at pipingSuchomel, Radoslav January 2010 (has links)
The Thesis solves the issue of a design and construction of piping specifically focused on boiler apparatus and its equipment. This issue is important for creation of the piping classes in the (PDMS) programmes and for acceleration of output parameters which are mainly the temperature, materials, variable parameters, etc. This leads to other problems such as service life, security, economy, etc., are.
|
9 |
Incorporating human factors into process plant lifecycleWidiputri, Diah Indriani 16 September 2011 (has links) (PDF)
Major accidents in the process industries occurred mostly as an outcome of multiple failures in different safety barriers and their interrelation with unsafe acts by frontline operators. This has become the reason why safety analyses in terms of plant technical aspects cannot be performed independently from analysing human response to the changing technology. Unsafe acts and errors by operators must be seen as a symptom of system insufficiencies and underlying problems, rather than as the cause of an accident. With this paradigm, the need to optimally configure the system and the whole working condition to understand human’s limitation and requirements becomes very evident. It is too naive to desire that human operators make zero error by asking them to change their behaviour and to perfectly adapt to the system.
Human Factors (HF) attempts to cope with the need to understand the interrelation between human operators, the technology they are working with and the management system, with the aim to increase safety and efficiency. In achieving this goal, HF must be incorporated into the whole plant lifecycle, from the earliest design stage to plant operation and modifications. Moreover, HF analysis must comprise all kinds of operators’ activities and responsibilities in operating process plants, which can include manual works in field and supervisory control conducted remotely from a control centre/room.
This work has developed techniques that provide systematic way to incorporate HF into process plant lifecycle. The new HF analysis technique, PITOPA-Design, in a combination with the classic PITOPA, is applicable for an implementation during design and operation of a plant. With the awareness that safety analysis and HF cannot be performed separately, an interconnection with HAZOPs is made possible by means of this new technique. Moreover, to provide a systematic analysis of operators’ work in control room, an additional technique, the PITOPA-CR was also developed. This HF technique can as well be integrated into a general HF analysis both during design phase and plant operation. In addition to it, results coming from PITOPA-CR will provide information required to optimally configure control and alarm system, as well as the whole alarm management system to better understand the limitation and requirements of control room operators.
The structure of the development can be described as follows:
i) Development of HAZOPA (the Hazards and Operator Actions Analysis), which provides the interconnection between HF analysis and HAZOPs,
ii) Development of PITOPA-Design, a technique to incorporate HF consideration into design phase, which is differentiated into 3 stages to comprise the conceptual design, the basic engineering and the detail engineering phase,
iii) Development of PITOPA-CR, a technique for HF analysis in control room,
iv) Integration of PITOPA-CR into alarm management system, development of a technique for alarm prioritization. / Schwere Unfälle in der Prozessindustrie erfolgen meist aus einem Zusammenspiel mehrerer verschiedener Fehler und der gleichzeitigen Wechselwirkung mit falschem menschlichem Handeln. Dabei sind diese Fehlhandlungen nicht als Unfallursache anzusehen, sondern sie resultieren aus Fehlern, die in dem System selbst zu finden sind. Aus diesem Grund kann bei der Sicherheitsanalyse die technische Analyse nicht unabhängig von der Betrachtung des Human Factors (HF) durchgeführt werden. Um eine Reduzierung der Fehlhandlungen zu erreichen, müssen das Anlagendesign, die Bedienbarkeit und die Arbeitsumgebung an die menschlichen Fähigkeiten angepasst werden.
Human Factors (HF) betrachtet die Interaktion zwischen menschlichen, technischen und organisatorischen Aspekten einer Anlage, mit dem Ziel die Sicherheit und Effektivität der Anlage zu optimieren. Dafür ist eine Einbindung von HF in den gesamten Lebenszyklus einer Anlage notwendig. So müssen HF- Analysen nicht nur während des Betriebs einer Anlage und bei Prozessmodifikationen durchgeführt werden, sondern auch während des gesamten Design- Prozesses, da gerade in den frühen Design-Phasen das Optimierungspotential besonders hoch ist. Eine solche Analysemethode muss alle Aufgaben eines Operators erfassen, so dass zwischen manueller Arbeit und der Arbeit in der Leitwarte unterschieden werden muss.
In dieser Arbeit wurden Analysentechniken entwickelt, die einen systematischen Ansatz zur Berücksichtigung des HF über den gesamten Lebenszyklus einer verfahrenstechnischen Anlage darstellen. Mit Hilfe der neuen Analysemethode, PITOPA-Design, können Untersuchungen sowohl während der Designphase als auch während des Betriebs einer Anlage durchgeführt werden. Da solche HF-Analyse immer in Verbindung mit einer klassischen Sicherheitsanalyse erfolgen muss, bindet die neue Methode die HAZOP-Analyse direkt ein.
Darüber hinaus wurde ein weiterer Ansatz für die Analyse von Operatorhandlungen in einer Messwartenarbeit entwickelt. Diese neue Analysentechnik, PITOPA-CR, bildet die Grundlage für Verbesserungen im Alarmsystem und wird in das Alarmmanagementsystem eingebunden.
Die Arbeit ist wie folgt strukturiert:
i) Entwicklung von HAZOPA (the Hazards and Operator Actions Analysis). Diese Methode stellt die Einbindung der HF-Analyse in HAZOP dar.
ii) Entwicklung von PITOPA-Design, zur HF-Analyse während des gesamten Designprozesses einer verfahrenstechnischen Anlage. Die Methode wurde in 3 Teile eingeteilt, um die drei Designsphasen Conceptual-, Basic-, und Detail-Design zu erfassen.
iii) Entwicklung von PITOPA-CR, zur HF-Analyse in der Messwarte.
iv) Einbindung von PITOPA-CR in das Alarmmanagementsystem und Entwicklung einer Technik zur Alarmpriorisierung.
|
10 |
Incorporating human factors into process plant lifecycle: HF during design and operation of a process plantWidiputri, Diah Indriani 10 June 2011 (has links)
Major accidents in the process industries occurred mostly as an outcome of multiple failures in different safety barriers and their interrelation with unsafe acts by frontline operators. This has become the reason why safety analyses in terms of plant technical aspects cannot be performed independently from analysing human response to the changing technology. Unsafe acts and errors by operators must be seen as a symptom of system insufficiencies and underlying problems, rather than as the cause of an accident. With this paradigm, the need to optimally configure the system and the whole working condition to understand human’s limitation and requirements becomes very evident. It is too naive to desire that human operators make zero error by asking them to change their behaviour and to perfectly adapt to the system.
Human Factors (HF) attempts to cope with the need to understand the interrelation between human operators, the technology they are working with and the management system, with the aim to increase safety and efficiency. In achieving this goal, HF must be incorporated into the whole plant lifecycle, from the earliest design stage to plant operation and modifications. Moreover, HF analysis must comprise all kinds of operators’ activities and responsibilities in operating process plants, which can include manual works in field and supervisory control conducted remotely from a control centre/room.
This work has developed techniques that provide systematic way to incorporate HF into process plant lifecycle. The new HF analysis technique, PITOPA-Design, in a combination with the classic PITOPA, is applicable for an implementation during design and operation of a plant. With the awareness that safety analysis and HF cannot be performed separately, an interconnection with HAZOPs is made possible by means of this new technique. Moreover, to provide a systematic analysis of operators’ work in control room, an additional technique, the PITOPA-CR was also developed. This HF technique can as well be integrated into a general HF analysis both during design phase and plant operation. In addition to it, results coming from PITOPA-CR will provide information required to optimally configure control and alarm system, as well as the whole alarm management system to better understand the limitation and requirements of control room operators.
The structure of the development can be described as follows:
i) Development of HAZOPA (the Hazards and Operator Actions Analysis), which provides the interconnection between HF analysis and HAZOPs,
ii) Development of PITOPA-Design, a technique to incorporate HF consideration into design phase, which is differentiated into 3 stages to comprise the conceptual design, the basic engineering and the detail engineering phase,
iii) Development of PITOPA-CR, a technique for HF analysis in control room,
iv) Integration of PITOPA-CR into alarm management system, development of a technique for alarm prioritization.:ACKNOWLEDGEMENT i
ABSTRACT iii
ZUSAMMENFASSUNG iv
CONTENTS v
TABLE OF FIGURES viii
LIST OF TABLES x
NOMENCLATURE xi
ACRONYMS AND ABBREVIATIONS xii
CHAPTER 1 1
INTRODUCTION 1
1.1 Background 1
1.2 Objectives 2
1.3 Scope of Work 3
CHAPTER 2 5
THEORETICAL BACKGROUND 5
2.1 Fundamentals of Human Error 5
2.2 Human Factors (HF) 8
2.3 Motivations to Consider HF in Process Safety 9
2. 3. 1 Accidents that Address HF in Process Safety 11
2. 3. 2 Regulation and Legal Requirements 16
2. 3. 3 Business Value 19
2.4 Work of Operators in Complex Systems 19
2. 4. 1 Role of Operators in Complex Systems 20
2. 4. 2 Problems with Computerisation and Automation 24
2. 4. 3 Allocation of Functions and Levels of Automation 25
2.5 Performance Influencing Factors (PIFs) 27
2.6 Distributed Control System (DCS) and Alarm Systems 29
2. 6. 1 Alarm, Alarm System and Alarm Management 30
2. 6. 2 Most Common Alarm Problems 33
2. 6. 3 Improving Alarm Performance through Prioritization 34
2.7 Safety Analysis Methods 38
2.7.1 Qualitative Safety Analysis 39
2.7.2 Quantitative Safety Analysis 43
2.8 Mathematical Algorithms 44
2.8.1 Techniques for Multi-Criteria Decision Making (MCDM) 44
2.8.2 Classification Methods 47
CHAPTER 3 50
RECENT DEVELOPMENTS IN HF STUDIES 50
3. 1 Methods for HF analysis 50
A. Task Analysis 50
B. Techniques for Operators Actions Analysis 51
3. 2 Human Reliability Analyses (HRA) 52
3. 3 Consideration of Human Error in HAZOP 53
3. 4 HF in Process Plant Design 54
3. 5 HF in Alarm Management and DCS-Design 55
3. 6 The Need for Further Development of HF Methods 57
CHAPTER 4 58
MOTIVATION OF THE WORK 58
CHAPTER 5 61
PROCESS INDUSTRY TOOL FOR OPERATOR ACTIONS ANALYSIS (PITOPA) 61
5.1 The New Technique for Operator Actions Analysis (OAA) 64
5.2 Technique for Performance Influencing Factors (PIFs) Evaluation 65
5.3 Validation of PITOPA in the Process Industry 67
CHAPTER 6 71
EXTENDING HAZOP TO INTEGRATE HF INTO 71
GENERAL SAFETY ANALYSIS 71
6.1 Development of HAZOPA (The Hazard, Operability and Operator Actions Analysis) 72
6.2 Case Study 75
CHAPTER 7 85
APPROACH TO INCORPORATING HF CONSIDERATION 85
INTO PLANT DESIGN 85
7.1 Development of an Approach for HF Analysis in Design – The PITOPA-Design 85
7.1.1 HF Analysis in Conceptual Design Phase (HFAD–Conceptual) 88
7.1.2 HF Analysis in Basic Engineering (HFAD – Basic) 93
7.1.3 HF Analysis in Detail Engineering (HFAD-Detail) 107
7.2 Technique for HF-Design Parameters Evaluation 109
7.3 Intermediate Summary 114
CHAPTER 8 115
IMPLEMENTATION OF THE NEW PITOPA-DESIGN: 115
A CASE-STUDY 115
8.1 Conceptual Design 115
8.2 Basic Engineering 123
8.3 Detail Engineering 127
CHAPTER 9 132
APPROACH FOR IMPROVING OPERATOR PERFORMANCE 132
IN CONTROL ROOM 132
9.1 Performance Influencing Factors (PIFs) for Supervisory & Monitoring Tasks 134
9.2 Development of PITOPA-Control Room (PITOPA-CR) 140
9.2.1 Analysis of Normal Operation 142
9.2.2 Analysis of Abnormal Operation 150
9.3 Alarm Prioritization 156
9.3.1 A survey on Alarm Prioritization 156
9.3.2 Incorporation of CROAA into Alarm Prioritization 157
9.4 Intermediate Summary 165
CHAPTER 10 167
INCORPORATION OF OPERATOR ACTIONS ANALYSIS INTO ALARM MANAGEMENT 167
CHAPTER 11 171
RESULTS AND FUTURE WORKS 171
11. 1 Results 171
11. 2 Future Works 172
BIBLIOGRAPHY 174
APPENDIX A A-1
APPENDIX B B-1 / Schwere Unfälle in der Prozessindustrie erfolgen meist aus einem Zusammenspiel mehrerer verschiedener Fehler und der gleichzeitigen Wechselwirkung mit falschem menschlichem Handeln. Dabei sind diese Fehlhandlungen nicht als Unfallursache anzusehen, sondern sie resultieren aus Fehlern, die in dem System selbst zu finden sind. Aus diesem Grund kann bei der Sicherheitsanalyse die technische Analyse nicht unabhängig von der Betrachtung des Human Factors (HF) durchgeführt werden. Um eine Reduzierung der Fehlhandlungen zu erreichen, müssen das Anlagendesign, die Bedienbarkeit und die Arbeitsumgebung an die menschlichen Fähigkeiten angepasst werden.
Human Factors (HF) betrachtet die Interaktion zwischen menschlichen, technischen und organisatorischen Aspekten einer Anlage, mit dem Ziel die Sicherheit und Effektivität der Anlage zu optimieren. Dafür ist eine Einbindung von HF in den gesamten Lebenszyklus einer Anlage notwendig. So müssen HF- Analysen nicht nur während des Betriebs einer Anlage und bei Prozessmodifikationen durchgeführt werden, sondern auch während des gesamten Design- Prozesses, da gerade in den frühen Design-Phasen das Optimierungspotential besonders hoch ist. Eine solche Analysemethode muss alle Aufgaben eines Operators erfassen, so dass zwischen manueller Arbeit und der Arbeit in der Leitwarte unterschieden werden muss.
In dieser Arbeit wurden Analysentechniken entwickelt, die einen systematischen Ansatz zur Berücksichtigung des HF über den gesamten Lebenszyklus einer verfahrenstechnischen Anlage darstellen. Mit Hilfe der neuen Analysemethode, PITOPA-Design, können Untersuchungen sowohl während der Designphase als auch während des Betriebs einer Anlage durchgeführt werden. Da solche HF-Analyse immer in Verbindung mit einer klassischen Sicherheitsanalyse erfolgen muss, bindet die neue Methode die HAZOP-Analyse direkt ein.
Darüber hinaus wurde ein weiterer Ansatz für die Analyse von Operatorhandlungen in einer Messwartenarbeit entwickelt. Diese neue Analysentechnik, PITOPA-CR, bildet die Grundlage für Verbesserungen im Alarmsystem und wird in das Alarmmanagementsystem eingebunden.
Die Arbeit ist wie folgt strukturiert:
i) Entwicklung von HAZOPA (the Hazards and Operator Actions Analysis). Diese Methode stellt die Einbindung der HF-Analyse in HAZOP dar.
ii) Entwicklung von PITOPA-Design, zur HF-Analyse während des gesamten Designprozesses einer verfahrenstechnischen Anlage. Die Methode wurde in 3 Teile eingeteilt, um die drei Designsphasen Conceptual-, Basic-, und Detail-Design zu erfassen.
iii) Entwicklung von PITOPA-CR, zur HF-Analyse in der Messwarte.
iv) Einbindung von PITOPA-CR in das Alarmmanagementsystem und Entwicklung einer Technik zur Alarmpriorisierung.:ACKNOWLEDGEMENT i
ABSTRACT iii
ZUSAMMENFASSUNG iv
CONTENTS v
TABLE OF FIGURES viii
LIST OF TABLES x
NOMENCLATURE xi
ACRONYMS AND ABBREVIATIONS xii
CHAPTER 1 1
INTRODUCTION 1
1.1 Background 1
1.2 Objectives 2
1.3 Scope of Work 3
CHAPTER 2 5
THEORETICAL BACKGROUND 5
2.1 Fundamentals of Human Error 5
2.2 Human Factors (HF) 8
2.3 Motivations to Consider HF in Process Safety 9
2. 3. 1 Accidents that Address HF in Process Safety 11
2. 3. 2 Regulation and Legal Requirements 16
2. 3. 3 Business Value 19
2.4 Work of Operators in Complex Systems 19
2. 4. 1 Role of Operators in Complex Systems 20
2. 4. 2 Problems with Computerisation and Automation 24
2. 4. 3 Allocation of Functions and Levels of Automation 25
2.5 Performance Influencing Factors (PIFs) 27
2.6 Distributed Control System (DCS) and Alarm Systems 29
2. 6. 1 Alarm, Alarm System and Alarm Management 30
2. 6. 2 Most Common Alarm Problems 33
2. 6. 3 Improving Alarm Performance through Prioritization 34
2.7 Safety Analysis Methods 38
2.7.1 Qualitative Safety Analysis 39
2.7.2 Quantitative Safety Analysis 43
2.8 Mathematical Algorithms 44
2.8.1 Techniques for Multi-Criteria Decision Making (MCDM) 44
2.8.2 Classification Methods 47
CHAPTER 3 50
RECENT DEVELOPMENTS IN HF STUDIES 50
3. 1 Methods for HF analysis 50
A. Task Analysis 50
B. Techniques for Operators Actions Analysis 51
3. 2 Human Reliability Analyses (HRA) 52
3. 3 Consideration of Human Error in HAZOP 53
3. 4 HF in Process Plant Design 54
3. 5 HF in Alarm Management and DCS-Design 55
3. 6 The Need for Further Development of HF Methods 57
CHAPTER 4 58
MOTIVATION OF THE WORK 58
CHAPTER 5 61
PROCESS INDUSTRY TOOL FOR OPERATOR ACTIONS ANALYSIS (PITOPA) 61
5.1 The New Technique for Operator Actions Analysis (OAA) 64
5.2 Technique for Performance Influencing Factors (PIFs) Evaluation 65
5.3 Validation of PITOPA in the Process Industry 67
CHAPTER 6 71
EXTENDING HAZOP TO INTEGRATE HF INTO 71
GENERAL SAFETY ANALYSIS 71
6.1 Development of HAZOPA (The Hazard, Operability and Operator Actions Analysis) 72
6.2 Case Study 75
CHAPTER 7 85
APPROACH TO INCORPORATING HF CONSIDERATION 85
INTO PLANT DESIGN 85
7.1 Development of an Approach for HF Analysis in Design – The PITOPA-Design 85
7.1.1 HF Analysis in Conceptual Design Phase (HFAD–Conceptual) 88
7.1.2 HF Analysis in Basic Engineering (HFAD – Basic) 93
7.1.3 HF Analysis in Detail Engineering (HFAD-Detail) 107
7.2 Technique for HF-Design Parameters Evaluation 109
7.3 Intermediate Summary 114
CHAPTER 8 115
IMPLEMENTATION OF THE NEW PITOPA-DESIGN: 115
A CASE-STUDY 115
8.1 Conceptual Design 115
8.2 Basic Engineering 123
8.3 Detail Engineering 127
CHAPTER 9 132
APPROACH FOR IMPROVING OPERATOR PERFORMANCE 132
IN CONTROL ROOM 132
9.1 Performance Influencing Factors (PIFs) for Supervisory & Monitoring Tasks 134
9.2 Development of PITOPA-Control Room (PITOPA-CR) 140
9.2.1 Analysis of Normal Operation 142
9.2.2 Analysis of Abnormal Operation 150
9.3 Alarm Prioritization 156
9.3.1 A survey on Alarm Prioritization 156
9.3.2 Incorporation of CROAA into Alarm Prioritization 157
9.4 Intermediate Summary 165
CHAPTER 10 167
INCORPORATION OF OPERATOR ACTIONS ANALYSIS INTO ALARM MANAGEMENT 167
CHAPTER 11 171
RESULTS AND FUTURE WORKS 171
11. 1 Results 171
11. 2 Future Works 172
BIBLIOGRAPHY 174
APPENDIX A A-1
APPENDIX B B-1
|
Page generated in 0.0818 seconds