Spelling suggestions: "subject:"subharmonic"" "subject:"subharmonics""
1 |
Bordered Complex HessiansJohn P. D'Angelo, Andreas.Cap@esi.ac.at 07 December 2000 (has links)
No description available.
|
2 |
Construction of plurisubharmonic functions on complete Kähler manifolds黃永儀, Wong, Wing-yee, Simon. January 2000 (has links)
published_or_final_version / Mathematics / Master / Master of Philosophy
|
3 |
Pluripolar sets and pluripolar hulls /Edlund, Tomas, January 2005 (has links)
Diss. (sammanfattning) Uppsala : Univ., 2005. / Härtill 4 uppsatser.
|
4 |
Construction of plurisubharmonic functions on complete Kähler manifolds /Wong, Wing-yee, Simon. January 2000 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2000. / Includes bibliographical references (leaves 79-82).
|
5 |
Variations and uniform compactifications of fibers on Stein spacesChan, Shu-fai., 陳澍輝. January 2006 (has links)
published_or_final_version / Mathematics / Master / Master of Philosophy
|
6 |
Variations and uniform compactificatfons of fibers on Stein spacesChan, Shu-fai. January 2006 (has links)
Thesis (M. Phil.)--University of Hong Kong, 2007. / Title proper from title frame. Also available in printed format.
|
7 |
On the Extension and Wedge Product of Positive CurrentsAl Abdulaali, Ahmad Khalid January 2012 (has links)
This dissertation is concerned with extensions and wedge products of positive currents. Our study can be considered as a generalization for classical works done earlier in this field. Paper I deals with the extension of positive currents across different types of sets. For closed complete pluripolar obstacles, we show the existence of such extensions. To do so, further Hausdorff dimension conditions are required. Moreover, we study the case when these obstacles are zero sets of strictly k-convex functions. In Paper II, we discuss the wedge product of positive pluriharmonic (resp. plurisubharmonic) current of bidimension (p,p) with the Monge-Ampère operator of plurisubharmonic function. In the first part of the paper, we define this product when the locus points of the plurisubharmonic function are located in a (2p-2)-dimensional closed set (resp. (2p-4)-dimensional sets), in the sense of Hartogs. The second part treats the case when these locus points are contained in a compact complete pluripolar sets and p≥2 (resp. p≥3). Paper III studies the extendability of negative S-plurisubharmonic current of bidimension (p,p) across a (2p-2)-dimensional closed set. Using only the positivity of S, we show that such extensions exist in the case when these obstacles are complete pluripolar, as well as zero sets of C2-plurisubharmoinc functions. / At the time of doctoral defense, the following papers were unpublished and had a status as follows: Paper 1: Accepted. Paper 2: Manuscript. Paper 3: Manuscript.
|
8 |
The plurisubharmonic Mergelyan propertyHed, Lisa January 2012 (has links)
In this thesis, we study two different kinds of approximation of plurisubharmonic functions. The first one is a Mergelyan type approximation for plurisubharmonic functions. That is, we study which domains in C^n have the property that every continuous plurisubharmonic function can be uniformly approximated with continuous and plurisubharmonic functions defined on neighborhoods of the domain. We will improve a result by Fornaess and Wiegerinck and show that domains with C^0-boundary have this property. We will also use the notion of plurisubharmonic functions on compact sets when trying to characterize those continuous and plurisubharmonic functions that can be approximated from outside. Here a new kind of convexity of a domain comes in handy, namely those domains in C^n that have a negative exhaustion function that is plurisubharmonic on the closure. For these domains, we prove that it is enough to look at the boundary values of a plurisubharmonic function to know whether it can be approximated from outside. The second type of approximation is the following: we want to approximate functions u that are defined on bounded hyperconvex domains Omega in C^n and have essentially boundary values zero and bounded Monge-Ampère mass, with increasing sequences of certain functions u_j that are defined on strictly larger domains. We show that for certain conditions on Omega, this is always possible. We also generalize this to functions with given boundary values. The main tool in the proofs concerning this second approximation is subextension of plurisubharmonic functions.
|
9 |
Approximation and Subextension of Negative Plurisubharmonic FunctionsHed, Lisa January 2008 (has links)
<p>In this thesis we study approximation of negative plurisubharmonic functions by functions defined on strictly larger domains. We show that, under certain conditions, every function <i>u</i> that is defined on a bounded hyperconvex domain Ω in C<i>n</i><i> </i>and has essentially boundary values zero and bounded Monge-Ampère mass, can be approximated by an increasing sequence of functions {<i>u</i><i>j</i>} that are defined on strictly larger domains, has boundary values zero and bounded Monge-Ampère mass. We also generalize this and show that, under the same conditions, the approximation property is true if the function u has essentially boundary values G, where G is a plurisubharmonic functions with certain properties. To show these approximation theorems we use subextension. We show that if Ω_1 and Ω_2 are hyperconvex domains in C<i>n</i> and if u is a plurisubharmonic function on Ω_1 with given boundary values and with bounded Monge-Ampère mass, then we can find a plurisubharmonic function û defined on Ω_2, with given boundary values, such that û <= u on Ω and with control over the Monge-Ampère mass of û.</p>
|
10 |
Approximation and Subextension of Negative Plurisubharmonic FunctionsHed, Lisa January 2008 (has links)
In this thesis we study approximation of negative plurisubharmonic functions by functions defined on strictly larger domains. We show that, under certain conditions, every function u that is defined on a bounded hyperconvex domain Ω in Cn and has essentially boundary values zero and bounded Monge-Ampère mass, can be approximated by an increasing sequence of functions {uj} that are defined on strictly larger domains, has boundary values zero and bounded Monge-Ampère mass. We also generalize this and show that, under the same conditions, the approximation property is true if the function u has essentially boundary values G, where G is a plurisubharmonic functions with certain properties. To show these approximation theorems we use subextension. We show that if Ω_1 and Ω_2 are hyperconvex domains in Cn and if u is a plurisubharmonic function on Ω_1 with given boundary values and with bounded Monge-Ampère mass, then we can find a plurisubharmonic function û defined on Ω_2, with given boundary values, such that û <= u on Ω and with control over the Monge-Ampère mass of û.
|
Page generated in 0.0603 seconds