1 |
Fiabilité et miniaturisation des condensateurs pour l'aéronautique : de l'évaluation de composants céramique de puissance à l'étude de nanoparticules hybrides céramique / polymère pour technologies enterrées / Towards reliability and miniaturization of capacitors for aeronautical applications : from the characterization and the reliability assessment of power ceramic components to the study of hybrid ceramic / polymer nanoparticles for embedded technologiesBenhadjala, Warda 16 July 2013 (has links)
L’amélioration des systèmes électroniques pour le déploiement de l'avion tout électrique dépend de la capacité des composants passifs, tels que les condensateurs, à réduire leur volume, leur masse et leur coût, et augmenter leurs performances et leur fiabilité, particulièrement dans l’environnement aéronautique. Dans ce contexte, cette thèse a eu pour objectif l’étude et le développement de nouvelles technologies de condensateurs pour des applications avioniques. Dans la première partie des travaux, nous abordons l’évaluation de condensateurs céramique de puissance. La technologie céramique constitue, en effet, l’une des rares solutions matures capables de répondre aux exigences des équipementiers. La caractérisation, l’analyse des mécanismes de défaillance, de leurs effets et de leur criticité (AMDEC) ainsi que l’étude de fiabilité et de robustesse de composants commerciaux présentant des architectures originales (condensateurs multi-chips) ont été réalisées. Ces résultats ont été complétés par une étude plus amont sur la caractérisation de céramiques frittées par frittage flash (SPS). Les permittivités colossales de ces matériaux permettraient d’accroitre la fiabilité et la miniaturisation des condensateurs tout en conservant de fortes valeurs de capacité et de tension nominale. La seconde partie, plus fondamentale, a été consacrée au développement de nanoparticules céramique/polymère coeur-écorce pour des applications de condensateurs enterrés, opérant aux radiofréquences. La synthèse et les caractérisations physico-chimiques des nanocomposites ainsi que les procédés de fabrication de condensateurs en couches épaisses sont, en premier lieu, décrits. Une méthode de caractérisation électrique large bande a été mise au point pour permettre l’analyse des propriétés diélectriques et des mécanismes de conduction des nanoparticules. Les performances des dispositifs ont été recherchées en fonction de la température et des procédés de mise en forme. En outre, la durabilité en température de ces derniers a été évaluée. / The improvement of electronic systems for the deployment of all-electric aircrafts depends on the ability of passive components, such as capacitors, to reduce their volume, weight and cost, and to increase their performance and reliability, particularly in the aeronautical environment. In this context, the objective of this thesis was to study and develop novel capacitor technologies for avionics. In the first part of this work, the evaluation of power ceramic capacitors has been discussed. Indeed, the ceramic technology appeared to be one of the few mature solutions meeting the requirements of OEMs. The characterization, the failure mode, effects and criticality analysis (FMECA) and reliability and robustness assessment of commercial components using original architectures (multi-chip capacitors) have been performed. These results have been completed by a more advanced study on the characterization of new ceramics sintered by spark plasma sintering (SPS). The colossal permittivity of these materials could allow to increase reliability and miniaturization of capacitors while maintaining high values of capacitance and voltage rating. The second part, more fundamental, is devoted to the development of core-shell ceramic/polymer nanoparticles for embedded capacitors operating at radiofrequencies. The synthesis and the physicochemical characterization of the nanocomposites as well as the manufacturing processes of the thick film capacitors are first described. A new broadband electrical characterization methodology has been developed to analyze the dielectric properties and the conduction mechanisms of the nanoparticles. The effects of the temperature and the manufacturing process on the device performance have been investigated. In addition, the durability was evaluated.
|
Page generated in 0.0574 seconds