• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Zylindrische Polymakromonomere als Template für die Herstellung von Nanostrukturen

Widmer, Jörg Alexander. January 2004 (has links) (PDF)
Mainz, Universiẗat, Diss., 2004.
2

Synthese und Charakterisierung von Polymakromonomeren unterschiedlicher Topologie

Neiser, Michael Wolfgang. January 2003 (has links) (PDF)
Mainz, Universiẗat, Diss., 2003.
3

Synthesis and characterization of polymacromonomers based on polyethers

Mendrek, Aleksandra 24 April 2006 (has links) (PDF)
The synthesis and polymerization of macromonomers containing a polymerizable styrene head group and a tail of ethylene oxide derivatives of different character were investigated. The synthesis of macromonomers was based on living anionic polymerization of oxiranes. Two monomers were used: 1-ethoxyethyl glycidyl ether (glycidol acetal), which after hydrolysis forms hydrophilic glycidol blocks and glycidyl phenyl ether forming hydrophobic blocks. Polymerizable double bonds were introduced by terminating the living chain with p-(chloromethyl)styrene. However, MALDI-TOF-MS end group analysis showed that all synthesized macromonomers were a mixture of the macromonomer and the non-functionalized oligomer. The degree of functionalization varied from 55 to 75 %. The obtained macromonomers showed amphiphilic properties and formed micelles in water. The determined critical micellization (CMC) concentration for poly(glycidol) macromonomer (DP = 50) was ca. 10 g/L, while the poly(glycidol) block macromonomers with hydrophobic spacer showed CMC on the level 0,7 g/L. The conventional free radical and controlled free radical polymerisation (ATRP) were used for preparation of polymacromonomers with different properties. The radical polymerization of the macromonomers was carried out in water using AVA as initiator and in the mixture of water/benzene (10/1 v/v) using AIBN. Core-shell polymers of different character and molar masses with polydispersity indices from 1,4 -3,0 were obtained. The ATRP carried out in water using PEO macroinitiator led to polymacromonomers with polydispersity indices from 1,1 to 1,3 and desiried molecular weight. In all cases the conversion of macromonomer (able to polymerization) was close to 100%. The polymerization product could easily be separated from the unable to reaction residue.
4

Synthesis and characterization of polymacromonomers based on polyethers

Mendrek, Aleksandra 23 May 2006 (has links)
The synthesis and polymerization of macromonomers containing a polymerizable styrene head group and a tail of ethylene oxide derivatives of different character were investigated. The synthesis of macromonomers was based on living anionic polymerization of oxiranes. Two monomers were used: 1-ethoxyethyl glycidyl ether (glycidol acetal), which after hydrolysis forms hydrophilic glycidol blocks and glycidyl phenyl ether forming hydrophobic blocks. Polymerizable double bonds were introduced by terminating the living chain with p-(chloromethyl)styrene. However, MALDI-TOF-MS end group analysis showed that all synthesized macromonomers were a mixture of the macromonomer and the non-functionalized oligomer. The degree of functionalization varied from 55 to 75 %. The obtained macromonomers showed amphiphilic properties and formed micelles in water. The determined critical micellization (CMC) concentration for poly(glycidol) macromonomer (DP = 50) was ca. 10 g/L, while the poly(glycidol) block macromonomers with hydrophobic spacer showed CMC on the level 0,7 g/L. The conventional free radical and controlled free radical polymerisation (ATRP) were used for preparation of polymacromonomers with different properties. The radical polymerization of the macromonomers was carried out in water using AVA as initiator and in the mixture of water/benzene (10/1 v/v) using AIBN. Core-shell polymers of different character and molar masses with polydispersity indices from 1,4 -3,0 were obtained. The ATRP carried out in water using PEO macroinitiator led to polymacromonomers with polydispersity indices from 1,1 to 1,3 and desiried molecular weight. In all cases the conversion of macromonomer (able to polymerization) was close to 100%. The polymerization product could easily be separated from the unable to reaction residue.

Page generated in 0.0648 seconds