• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 1
  • Tagged with
  • 12
  • 12
  • 9
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Detekce spánkové apnoe / Sleep apnea detection

Hastík, Matěj January 2015 (has links)
This master‘s thesis deals with a detailed description of sleep apnea and methods of detection of sleep apnea. The first part of the work is focused on the physiology of sleep, sleep apnea itself, its distribution, symptoms, risk factors and treatment. The next part of the work deals with polysomnographic examination and methods for analysis of polysomnographic data. The last part is devoted to the procedure design for detecting sleep apnea by using only one kind of signal and by using more kinds of signals, implementation of these proposals, their testing on real data, evaluating the detection performance and comparing the results with data available in the literature.
2

Detekce spánkové apnoe z polysomnografických dat / Detection of sleep apnea from polysomnographic signals

Vecheta, Miroslav January 2016 (has links)
This thesis deals with the detection of sleep apnea using polysomnographic data and attempt to find a possible alternative and simpler method of this detection. The thesis consists of three parts: The first part is important for introduction to the lungs anatomy and the physiology of breathing and the sleep phisiology. The second part deals with the ways of testing sleep apnea. The third part then continues with implementation of alternative methods of testing in Matlab software. The final program calculates the breathing curve from ECG data. The curve is important for the final detection of sleep apnea.
3

Klasifikace spánkových fázi za použití polysomnografických dat / Classification of sleep phases using polysomnographic data

Králík, Martin January 2015 (has links)
Aim of this thesis is the classification of polysomnographic data. The first part of the thesis is a review of mentioned topic and also the statistical analysis of classification features calculated from real EEG, EOG and EMG for evaluating of the features suitability for sleep stages scoring. The second part is focused on the automatic classification of the data using artificial neural networks. All the results are presented and discussed.
4

Automatická detekce grafoelementů ve spánkových signálech EEG / Automatic detection of graphoelements in sleep EEG

Balcarová, Anežka January 2015 (has links)
This project is aimed at sleeping EEG signal, especially at searching of sleeping graphoelements and next at processing signal, witch this segmentation go before. Charakterization of sleeping graphoelements and problems with their classification are outlined here. Principle of two detection methods of k-komplex are explained and processed by Matlab with graphically representation of results. Results of automatic classification are compared with scoring of two experts.
5

Pokročilé skórování spánkových dat / Advanced scoring of sleep data

Jagošová, Petra January 2021 (has links)
The master´s thesis is focused on advanced scoring of sleep data, which was performed using deep neural network. Heart rate data and the movement information were used for scoring measured using an Apple Watch smartwatch. After appropriate pre-processing, this data serves as input parameters to the designed networks. The goal of the LSTM network was to classify data into either two groups for sleep and wake or into three groups for wake, Non-REM and REM. The best results were achieved by network doing classification of sleep vs. wake using the accelerometer. The statistical evaluation of this best-designed network reached the values of sensitivity 71,06 %, specificity 57,05 %, accuracy 70,01 % and F1 score 81,42 %.
6

Analýza spánkového signálu EEG / Analysis of sleep EEG signal

Ježek, Martin January 2009 (has links)
Cílem této práce byl vývoj programu pro automatickou detekci arousalu v signálu spánkového EEG s použitím metod časově-frekvenční analýzy. Předmětem studie bylo 13 celonočních polysomnografických nahrávek (čtyři svody EEG, EMG, EKG a EOG), tj. celkově více než 100 hodin záznamu. Jednalo se o část dat z dřívějších výzkumných prací expertní lékařky v problematice spánku Dr. Emilie Sforzy, Ženeva, Švýcarsko, která rovněž poskytla základní hodnocení těchto dat. V záznamech bylo celkem označeno 1551 arousal událostí. Pro usnadnění výběru konkrétní metody časově-frekvenční analýzy byla následně vytvořena sada nástrojů pro vizualizaci jednotlivých signálů a jejich různých časově-frekvenčních vyjádření. S ohledem na závěry vizuální analýzy, charakter signálu EEG a efektivitu výpočetních metod byla pro analýzu vybrána waveletová transformace s mateřskou vlnkou Daubechies řádu 6. Jednotlivé svody EEG byly dekomponovány do šesti frekvenčních pásem. Z takto odvozených signálů a signálu EMG byly následně stanoveny ukazatele možné přítomnosti události arousalu. Tyto ukazatele byly dále váhovány lineárním klasifikátorem, jehož hodnoty vah byly optimalizovány pomocí genetického algoritmu. Na základě hodnoty lineárního klasifikátoru bylo rozhodnuto o přítomnosti události arousalu v daném svodě EEG – arousal byl detekován, jestliže hodnota klasifikátoru překročila danou mez na dobu více než 3 a méně než 30 vteřin. V celém záznamu pak byl arousal označen, byl-li detekován alespoň v jednom ze svodů EEG. Následně byly odvozeny míry senzitivity a selektivity detekce, jež byly rovněž základem pro stanovení fitness funkce genetického algoritmu. Pro učení genetického algoritmu byly vybrány první čtyři záznamy. Na základě takto optimalizovaných vah vznikl program pro automatickou detekci, který na celém souboru 13 záznamů dosáhl ve srovnání s expertním hodnocením míry senzitivity 76,09%, selektivity 53,26% a specificity 97,66%.
7

Automatická detekce K-komplexů ve spánkových signálech EEG / Automatic detection of K-complexes in sleep EEG signals

Pecníková, Michaela January 2016 (has links)
This paper addresses the problem of detecting K-complexes in sleep EEG. The study of sleep has become very essential to diagnose the brain disorders and analysis of brain activities. Since Kcomplex can have a wide variety of shapes it is very difficult to detect the K-complexes manually. In this paper, I present an automatic method for K-complexes detection based wavelet transform,TKEO and method for classification using feedforward multilayer neural network designed in Matlab. Detection performance reached the value approx. from 52,9 to 83,6 %.
8

Automatická klasifikace spánkových fází z polysomnografických dat / Automatic sleep scoring using polysomnographic data

Kříženecká, Tereza January 2017 (has links)
The thesis is focused on automatic classification of polysomnographic signals based on various parameters in time and frequency domain. The parameters are acquired from 30 seconds long segments of EEG, EMG and EOG signals recorded during different sleep stages. The parameters used for automatic classification of sleep stages are selected according to statistical analysis. Classification is performed using the SVM method and evaluation of the success of the classification is done using sensitivity, specificity and percentage success. Classification method was implemented using Matlab.
9

Porucha chování v REM spánku:Charakteristika polysomnografických a behaviorálních projevů. / REM sleep behavior disorder:Characteristics of polysomnographic and behavioral manifestations.

Nepožitek, Jiří January 2019 (has links)
REM sleep behavior disorder: Characteristics of polysomnographic and behavioral manifestations Abstract REM sleep behavior disorder (RBD) is a disease characterized by abnormal motor activity corresponding to the dream content. REM sleep without atonia (RWA) and behavioral manifestations are the main features registered by video-polysomnography (PSG). Because idiopathic RBD (iRBD) is considered as prodromal stage of synucleinopathies, the direction of current research is the search for markers of early conversion. The goal of this study was to observe the group of patients with iRBD with regard to the development of manifest neurodegenerative disease, to find and test a new polysomnographic marker of phenoconversion, to perform analysis of the movements registered by video and to quantify excessive fragmentary myoclonus (EFM), which is a frequent finding in neurodegenerative processes. A total of 55 patients with iRBD were observed for 2.3±0.7 years. The annual conversion rate was 5.5%. Mixed RWA, representing simultaneous occurrence of phasic and tonic RWA, was suggested as a new marker of phenoconversion. Converted patients showed a higher mixed RWA (p=0.009) and the ROC analysis confirmed that mixed RWA is the best predictive marker of conversion among other RWA types (AUC 0.778). An average of...
10

Automatická klasifikace spánkových fází / Automatic sleep scoring

Schwanzer, Miroslav January 2019 (has links)
This master thesis deals with classification of sleep stages on the base of polysomnographic signals. On several signals was performed analysis and feature extraxtion in time domain and in frequency domain as well. For feature extraxtion was used EEG, EOG and EMG signals. For classification was selected classification models K-NN, SVM and artifical neural network. Accuracy of classifation is different depending on used method and spleep stages split. The best results achieved classification among stages Wake, REM, and N3, with neural network usage. In this case the succes was 93,1 %.

Page generated in 0.0693 seconds