1 |
DESIGN AND USE OF MODERN OPTIMAL RATIO COMBINERSLennox, William M. 10 1900 (has links)
International Telemetering Conference Proceedings / October 28-31, 1996 / Town and Country Hotel and Convention Center, San Diego, California / This paper will discuss the design and use of Optimal Ratio Combiners in modern
telemetry applications. This will include basic design theory, operational setups, and
various types of combiner configurations. The paper will discuss the advantages of pre-detection
vs. post-detection combining. Finally, the paper will discuss modern design
techniques.
|
2 |
Information theoretic approach in detection and security codesXiao, Jiaxi 03 April 2012 (has links)
Signal detection plays a critical role in realizing reliable transmission through communication systems. In this dissertation, by applying information theoretic approach, efficient detection schemes and algorithms are designed for three particular communication systems. First, a computation efficient coding and detection algorithm is developed to decode two dimensional inter-symbol interference (ISI) channels. The detection algorithm significantly reduces the computation complexity and makes the proposed equalization algorithm applicable. A new metric, the post-detection mutual information (PMI), is established to quantify the ultimate information rate between the discrete inputs and the hard detected output. This is the first time that the information rate loss caused by the hard mapping of the detectors is considered. Since the hard mapping step in the detector is irreversible, we expect that the PMI is reduced compared to the MI without hard mapping. The conclusion is confirmed by both the simulation and the theoretic results. Random complex field code is designed to achieve the secrecy capacity of wiretap channel with noiseless main channel and binary erasure eavesdroppers' channel. More importantly, in addition to approaching the secrecy capacity, RCFC is the first code design which provides a platform to tradeoff secrecy performance with the erasure rate of the eavesdropper's channel and the secrecy rate.
|
3 |
Performance Analysis Of Post Detection Integration Techniques In The Presence Of Model UncertaintiesChandrasekhar, J 06 1900 (has links) (PDF)
In this thesis, we analyze the performance of the Post Detection Integration (PDI) techniques used for detection of weak DS/CDMA signals in the presence of uncertainty in the frequency, noise variance and data bits. Such weak signal detection problems arise, for example, in the first step of code acquisition for applications such as the Global Navigation Satellite Systems (GNSS) based position localization. Typically, in such applications, a combination of coherent and post-coherent integration stages are used to improve the reliability of signal detection. We show that the feasibility of using fully coherent processing is limited due to the presence of unknown data-bits and/or frequency uncertainty. We analyze the performance of the two conventional PDI techniques, namely, the Non-coherent PDI (NC-PDI) and the Differential-PDI (D-PDI), in the presence of noise and data bit uncertainty, to establish their robustness for weak signal detection. We show that the NC-PDI technique is robust to uncertainty in the data bits, but a fundamental detection limit exists due to uncertainty in the noise variance. The D-PDI technique, on the other hand, is robust to uncertainty in the noise variance, but its performance degrades in the presence of unknown data bits. We also analyze the following different variants of the NC-PDI and D-PDI techniques: Quadratic NC-PDI technique, Non-quadratic NC-PDI, D-PDI with real component (D-PDI (Real)) and D-PDI with absolute component (D-PDI (Abs)). We show that the likelihood ratio based test statistic derived in the presence of data bits is non-robust in the presence of noise uncertainty.
We propose two novel PDI techniques as a solution to the above mentioned shortcomings in the conventional PDI methods. The first is a cyclostationarity based sub-optimal PDI technique, that exploits the periodicity introduced due to the data bits. We establish the exact mathematical relationship between the D-PDI and cyclostationarity-based signal detection methods. The second method we propose is a modified PDI technique, which is robust against both noise and data bit uncertainties. We derive two variants of the modified technique, which are tailored for data and pilot channels, respectively. We characterize the performance of the conventional and proposed PDI techniques in terms of their false alarm and detection probabilities and compare them through the receiver operating characteristic (ROC) curves. We derive the sample complexity of the test-statistic in order to achieve a given performance in terms of detection and false alarm probabilities in the presence of model uncertainties. We validate the theoretical results and illustrate the improved performance that can be obtained using our proposed PDI protocols through Monte-Carlo simulations.
|
Page generated in 0.0769 seconds