• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Using a Smartphone to Detect the Standing-to-Kneeling and Kneeling-to-Standing Postural Transitions / Smartphone-baserad detektion av posturala övergångar mellan stående och knästående ställning

Setterquist, Dan January 2018 (has links)
In this report we investigate how well a smartphone can be used to detect the standing-to-kneeling and kneeling-to-standing postural transitions. Possible applications include measuring time spent kneeling in certain groups of workers prone to knee-straining work. Accelerometer and gyroscope data was recorded from a group of 10 volunteers while performing a set of postural transitions according to an experimental script. The set of postural transitions included the standing-to-kneeling and kneeling-to-standing transitions, in addition to a selection of transitions common in knee-straining occupations. Using recorded video, the recorded data was labeled and segmented into a data set consisting of 3-second sensor data segments in 9 different classes. The classification performance of a number of different LSTM-networks were evaluated on the data set. When evaluated in a user-specific setting, the best network achieved an overall classification accuracy of 89.4 %. The network achieved precision 0.982 and recall 0.917 for the standing-to-kneeling transitions, and precision 0.900 and recall 0.900 for the kneeling-to-standing transitions. When the same network was evaluated in a user-independent setting it achieved an overall accuracy of 66.3 %, with precision 0.720 and recall 0.746 for the standing-to-kneeling transitions, and precision 0.707 and recall 0.604 for the kneeling-to-standing transitions. The network was also evaluated in a setting where only accelerometer data was used. The achieved performance was similar to that achieved when using data from both the accelerometer and gyroscope. The classification speed of the network was evaluated on a smartphone. On a Samsung Galaxy S7 the average time needed to perform one classification was 38.5 milliseconds. The classification can therefore be done in real time. / I denna rapport undersöks möjligheten att använda en smartphone för att upptäcka posturala övergångar mellan stående och knästående ställning. Ett möjligt användningsområde för sådan detektion är att mäta mängd tid spenderad knäståendes hos vissa yrkesgrupper. Accelerometerdata och gyroskopdata spelades in från en grupp av 10 försökspersoner medan de utförde vissa posturala övergångar, vilka inkluderade övergångar från stående till knästående ställning samt från knästående till stående ställning. Genom att granska inspelad video från försöken markerades bitar av den inspelade datan som tillhörandes en viss postural övergång. Datan segmenterades och gav upphov till ett dataset bestående av 3 sekunder långa segment av sensordata i 9 olika klasser. Prestandan för ett antal olika LSTM-nätverk utvärderades på datasetet. Det bästa nätverket uppnådde en övergripande noggrannhet av 89.4 % när det utvärderades användarspecifikt. Nätverket uppnådde en precision av 0.982 och en återkallelse av 0.917 för övergångar från stående till knästående ställning, samt en precision av 0.900 och en återkallelse av 0.900 för övergångar från knästående till stående ställning. När samma nätverk utvärderades användaroberoende uppnådde det en övergripande noggrannhet av 66.3 %, med en precision av 0.720 och återkallelse av 0.746 för övergångar från stående till knästående ställning, samt en precision av 0.707 och återkallelse av 0.604 för övergångar mellan knästående och stående ställning. Nätverket utvärderades också i en konfiguration där enbart accelerometerdata nyttjades, och uppnådde liknande prestanda som när både accelerometerdata och gyroskopdata användes. Nätverkets klassificeringshastighet utvärderades på en smartphone. När klassificeringen utfördes på en Samsung Galaxy S7 var den genomsnittliga körningstiden 38.5 millisekunder, vilket är snabbt nog för att utföras i realtid.

Page generated in 0.1444 seconds