• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Capteurs optiques minimalistes & réflexes oculomoteurs biomimétiques. Application à la robotique aérienne

Kerhuel, Lubin 16 December 2009 (has links) (PDF)
La navigation visuelle des robots mobiles s'appuie traditionnellement sur des imageurs de type « caméra », dotés de plusieurs centaines de milliers de pixels lus séquentiellement. Le traitement de tels flux d'images nécessite une puissance de calcul qu'il serait difficile d'embarquer à bord d'un micro-aéronef de quelques grammes ou dizaines de grammes. Il existe pourtant déjà quelques agents aériens dont les performances de navigation en milieu inconnu sont remarquables, et qui pourtant fonctionnent de toute autre façon. Les oiseaux et les insectes, en particulier, montrent une capacité inégalée à éviter les obstacles et à poursuivre leurs proies ou leurs congénères. Cette capacité étonnante découle de leur perception particulière de l'environnement. Si les insectes, aux faibles capacités cognitives, perçoivent leur environnement de manière si efficace, c'est grâce aux capteurs minimalistes qu'ils embarquent. Certains insectes comme la mouche améliorent encore leur perception de l'environnement en stabilisant leur système visuel avec à un découplage tête-corps associé à un réflexe inertiel, équivalent au réflexe vestibulo-oculaire des mammifères. Cette stabilisation de la « plate-forme visuelle » permet de simplifier les traitements visuels subséquents et de mettre en œuvre des stratégies efficaces de navigation. Toute la première partie (« capteurs visuels ») de ce travail prend appui délibérément sur un œil élémentaire composé de seulement deux photorécepteurs (deux pixels). Nous avons d'abord amélioré les performances d'un capteur de vitesse angulaire bio-inspiré et revu le principe du capteur OSCAR, tous deux construits précédemment au laboratoire. Puis, nous avons développé et construit un nouveau type de capteur visuel, appelé VODKA, qui localise de manière ultrafine la position angulaire d'une cible visuelle. Dans la seconde partie (« réflexes visuo-inertiels »), nous avons développé un robot aérien miniature, appelé OSCAR II. Equipé de nos capteurs visuels et d'un réflexe « vestibulo-oculaire », OSCAR II, qui ne pèse que 100 grammes, est capable non seulement de fixer du regard une cible visuelle stationnaire, mais aussi de la poursuivre en lacet si elle vient à se déplacer, et ce même lors de fortes perturbations aérodynamiques. Avec sa capacité additionnelle de faire des saccades oculaires, OSCAR II préfigure les micro-véhicules aériens de demain, qui se dirigeront là où portera leur regard.
2

Stratégies de guidage visuel bio-inspirées : application à la stabilisation visuelle d’un micro-drone et à la poursuite de cibles / Strategies for bio-inspired visual guidance : application to control an UAV and to track a target

Manecy, Augustin 22 July 2015 (has links)
Les insectes sont capables de prouesses remarquables lorsqu’il s’agit d’éviter des obstacles,voler en environnement perturbé ou poursuivre une cible. Cela laisse penser que leurs capacités de traitement, aussi minimalistes soient-elles, sont parfaitement optimisées pour le vol. A cela s’ajoute des mécanismes raffinés, comme la stabilisation de la vision par rapport au corps, permettant d’améliorer encore plus leurs capacités de vol.Ces travaux de thèse présentent l’élaboration d’un micro drone de type quadrirotor, qui ressemble fortement à un insecte sur le plan perceptif (vibration rétinienne) et reprend des points structurels clés, tels que le découplage mécanique entre le corps et le système visuel. La conception du quadrirotor (de type open-source), son pilotage automatique et son système occulo-moteur sont minutieusement détaillés.Des traitements adaptés permettent, malgré un très faible nombre de pixels (24 pixels seulement), de poursuivre finement du regard une cible en mouvement. A partir de là, nous avons élaboré des stratégies basées sur le pilotage par le regard, pour stabiliser le robot en vol stationnaire, à l’aplomb d’une cible et asservir sa position ; et ce, en se passant d’une partie des capteurs habituellement utilisés en aéronautique tels que les magnétomètres et les accéléromètres. Le quadrirotor décolle, se déplace et atterrit de façon autonome en utilisant seulement ses gyromètres, son système visuel original mimant l’oeil d’un insecte et une mesure de son altitude. Toutes les expérimentations ont été validées dans une arène de vol, équipée de caméras VICON.Enfin, nous décrivons une nouvelle toolbox qui permet d’exécuter en temps réel des modèles Matlab/Simulink sur des calculateurs Linux embarqués de façon complètement automatisée (http://www.gipsalab.fr/projet/RT-MaG/). Cette solution permet d’écrire les modèles, de les simuler, d’élaborer des lois de contrôle pour enfin, piloter en temps réel, le robot sous l’environnement Simulink. Cela réduit considérablement le "time-to-flight" et offre une grande flexibilité (possibilité de superviser l’ensemble des données de vol, de modifier en temps réel les paramètres des contrôleurs, etc.). / Insects, like hoverflies are able of outstanding performances to avoid obstacles, reject disturbances and hover or track a target with great accuracy. These means that fast sensory motor reflexes are at work, even if they are minimalist, they are perfectly optimized for the flapping flight at insect scale. Additional refined mechanisms, like gaze stabilization relative to the body, allow to increase their flight capacity.In this PhD thesis, we present the design of a quadrotor, which is highly similar to an insect in terms of perception (visual system) and implements a bio-inspired gaze control system through the mechanical decoupling between the body and the visual system. The design of the quadrotor (open-source), itspilot and its decoupled eye are thoroughly detailed. New visual processing algorithms make it possible to faithfully track a moving target, in spite of a very limited number of pixels (only 24 pixels). Using this efficient gaze stabilization, we developed new strategies to stabilize the robot above a target and finely control its position relative to the target. These new strategies do not need classical aeronautic sensors like accelerometers and magnetometers. As a result, the quadrotor is able to take off, move and land automatically using only its embedded rate-gyros, its insect-like eye, and an altitude measurement. All these experiments were validated in a flying arena equipped with a VICON system. Finally, we describe a new toolbox, called RT-MaG toolbox, which generate automatically a real-time standalone application for Linux systems from a Matlab/Simulink model (http://www.gipsalab.fr/projet/RT-MaG/). These make it possible to simulate, design control laws and monitor the robot’s flight in real-time using only Matlab/Simulink. As a result, the "time-to-flight" is considerably reduced and the final application is highly reconfigurable (real-time monitoring, parameter tuning, etc.).

Page generated in 0.0662 seconds