1 |
Real-Time Localization of Planar Targets on Power-Constrained DevicesAkhoury, Sharat Saurabh 20 September 2013 (has links)
In this thesis we present a method for detecting planar targets in real-time on power-constrained, or low-powered, hand-held devices such as mobile phones. We adopt the feature recognition (also referred to as feature matching) approach and employ fast-to-compute local feature descriptors to establish point correspondences. To obtain a satisfactory localization accuracy, most local feature descriptors seek a transformation of the input intensity patch that is invariant to various geometric and photometric deformations. Generally, such transformations are computationally intensive, hence are not ideal for real-time applications on limited hardware platforms. On the other hand, descriptors which are fast to compute are typically limited in their ability to provide invariance to a vast range of deformations. To address these shortcomings, we have developed a learning-based approach which can be applied to any local feature descriptor to increase the system’s robustness to both affine and perspective deformations. The motivation behind applying a learning-based approach is to transfer as much of the computational burden (as possible) onto an offline training phase, allowing a reduction in cost during online matching. The approach comprises of identifying keypoints which remain stable under artificially induced perspective transformations, extracting the corresponding feature vectors, and finally aggregating the feature vectors of coincident keypoints to obtain the final descriptors. We strictly focus on objects which are planar, thus allowing us to synthesize images of the object in order to capture the appearance of keypoint patches under several perspectives.
|
2 |
Real-Time Localization of Planar Targets on Power-Constrained DevicesAkhoury, Sharat Saurabh January 2013 (has links)
In this thesis we present a method for detecting planar targets in real-time on power-constrained, or low-powered, hand-held devices such as mobile phones. We adopt the feature recognition (also referred to as feature matching) approach and employ fast-to-compute local feature descriptors to establish point correspondences. To obtain a satisfactory localization accuracy, most local feature descriptors seek a transformation of the input intensity patch that is invariant to various geometric and photometric deformations. Generally, such transformations are computationally intensive, hence are not ideal for real-time applications on limited hardware platforms. On the other hand, descriptors which are fast to compute are typically limited in their ability to provide invariance to a vast range of deformations. To address these shortcomings, we have developed a learning-based approach which can be applied to any local feature descriptor to increase the system’s robustness to both affine and perspective deformations. The motivation behind applying a learning-based approach is to transfer as much of the computational burden (as possible) onto an offline training phase, allowing a reduction in cost during online matching. The approach comprises of identifying keypoints which remain stable under artificially induced perspective transformations, extracting the corresponding feature vectors, and finally aggregating the feature vectors of coincident keypoints to obtain the final descriptors. We strictly focus on objects which are planar, thus allowing us to synthesize images of the object in order to capture the appearance of keypoint patches under several perspectives.
|
3 |
Power-constrained performance optimization of GPU graph traversalMcLaughlin, Adam Thomas 13 January 2014 (has links)
Graph traversal represents an important class of graph algorithms that is the nucleus of many large scale graph analytics applications. While improving the performance of such algorithms using GPUs has received attention, understanding and managing performance under power constraints has not yet received similar attention.
This thesis first explores the power and performance characteristics of breadth first search (BFS) via measurements on a commodity GPU. We
utilize this analysis to address the problem of minimizing execution time below a predefined power limit or power cap exposing key relationships between graph properties and power consumption.
We modify the firmware on a commodity GPU to
measure power usage and use the GPU as an experimental system to evaluate future architectural enhancements for the optimization of graph algorithms. Specifically, we propose and evaluate power management algorithms that scale i) the
GPU frequency or ii) the number of active GPU compute units for a diverse set of real-world and synthetic graphs. Compared to scaling either
frequency or compute units individually, our proposed schemes reduce execution time by an average of 18.64% by adjusting the configuration based on the inter- and intra-graph characteristics.
|
4 |
Design and Implementation of the Heterogeneous Computing Device Management ArchitectureSchultek, Brian Robert January 2014 (has links)
No description available.
|
Page generated in 0.0747 seconds