• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 3
  • Tagged with
  • 11
  • 11
  • 8
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modeling and Design Optimization of Plug-In Hybrid Electric Vehicle Powertrains

Chehresaz, Maryyeh January 2013 (has links)
Hybrid electric vehicles (HEVs) were introduced in response to rising environmental challenges facing the automotive sector. HEVs combine the benefits of electric vehicles and conventional internal combustion engine vehicles, integrating an electrical system (a battery and an electric motor) with an engine to provide improved fuel economy and reduced emissions, while maintaining adequate driving range. By comparison with conventional HEVs, plug-in hybrid electric vehicles (PHEVs) have larger battery storage systems and can be fully charged via an external electric power source such as the electrical grid. Of the three primary PHEV architectures, power-split architectures tend to provide greater efficiencies than parallel or series systems; however, they also demonstrate more complicated dynamics. Thus, in this research project, the problem of optimizing the component sizes of a power-split PHEV was addressed in an effort to exploit the flexibility of this powertrain system and further improve the vehicle's fuel economy, using a Toyota plug-in Prius as the baseline vehicle. Autonomie software was used to develop a vehicle model, which was then applied to formulate an optimization problem for which the main objective is to minimize fuel consumption over standard driving cycles. The design variables considered were: the engine's maximum power, the number of battery cells and the electric motor's maximum power. The genetic algorithm approach was employed to solve the optimization problem for various drive cycles and an acceptable reduction in fuel consumption was achieved thorough the sizing process. The model was validated against a MapleSim model. This research project successfully delivered a framework that integrates an Autonomie PHEV model and genetic algorithm optimization and can be used to address any HEV parameter optimization problem, with any objective, constraints, design variables and optimization parameters.
2

Power split Hydro-mechanical Variable Transmission (HVT) for off-highway application

Mercati, Stefano, Panizzolo, Fabrizio, Profumo, Giovanni 03 May 2016 (has links) (PDF)
Nowadays the needs to fulfill severe emission standards and to reduce the mobile machine operative costs have driven the off-highway industrial research towards new solutions able to increase the overall vehicle efficiency. Within this scenario, smart power split transmissions demonstrated to be a very attractive technology able to achieve the fuel consumption reduction targets, increasing the machine working cycle productivity. Compared to the standard technologies (such as Torque Converters - TC), the power split hydromechanical varible transmissin (HVT), designed and developed by Dana Rexroth Transmission Systems S.r.l. (DRTS), is able to fully decouple the engine to wheel behavior during the machine working cycle, with an higher efficiency than a pure hydrostatic transmission. Due to this fundamental characteristic, the HVT allows the engine to work next to the maximum efficiency point, consequently it is possible to downsize the engine to further increase the fuel saving. The analysis of the field test performed by an off-highway vehicle (Kalmar Cargotec DRG Gloria 450 reachstacker) equipped with a DRTS HVT has been shown along this paper; particular attention has been given to the cycle load spectra, the fuel consumption and the working cycle productivity through a comparison with standard TC technologies.
3

Power split Hydro-mechanical Variable Transmission (HVT) for off-highway application

Mercati, Stefano, Panizzolo, Fabrizio, Profumo, Giovanni January 2016 (has links)
Nowadays the needs to fulfill severe emission standards and to reduce the mobile machine operative costs have driven the off-highway industrial research towards new solutions able to increase the overall vehicle efficiency. Within this scenario, smart power split transmissions demonstrated to be a very attractive technology able to achieve the fuel consumption reduction targets, increasing the machine working cycle productivity. Compared to the standard technologies (such as Torque Converters - TC), the power split hydromechanical varible transmissin (HVT), designed and developed by Dana Rexroth Transmission Systems S.r.l. (DRTS), is able to fully decouple the engine to wheel behavior during the machine working cycle, with an higher efficiency than a pure hydrostatic transmission. Due to this fundamental characteristic, the HVT allows the engine to work next to the maximum efficiency point, consequently it is possible to downsize the engine to further increase the fuel saving. The analysis of the field test performed by an off-highway vehicle (Kalmar Cargotec DRG Gloria 450 reachstacker) equipped with a DRTS HVT has been shown along this paper; particular attention has been given to the cycle load spectra, the fuel consumption and the working cycle productivity through a comparison with standard TC technologies.
4

Efficient and high performing hydraulic systems in mobile machines

Frerichs, Ludger, Hartmann, Karl 03 May 2016 (has links) (PDF)
Hydraulic systems represent a crucial part of the drivetrain of mobile machines. The most important drivers of current developments, increasing energy efficiency and productivity, are leading to certain trends in technology. On a subsystem level, working hydraulics are utilizing effects by improving control functions and by maximum usage of energy recovery potential. Independent metering and displacement control, partly in combination with hybrid concepts, are the dominating approaches. Traction drives gain advantage from optimized power split transmissions, which consequently are being used in a growing number of applications. On the level of components, increase of efficiency and dynamics as well as power density are important trends. Altogether, design of systems and components is more and more based on modular concepts. In this sense, among others, sensors and control elements are being integrated to actuators; electric and hydraulic technology is being merged. In order to achieve maximum efficiency and performance of the entire machine, control of hydraulics has to include the whole drivetrain and the entire mobile machine in its application. In modern words, mobile hydraulic systems are a part of cyber physical systems.
5

An Illustrative Look at Energy Flow through Hybrid Powertrains for Design and Analysis

White, Eli Hampton 09 July 2014 (has links)
Throughout the past several years, a major push has been made for the automotive industry to provide vehicles with lower environmental impacts while maintaining safety, performance, and overall appeal. Various legislation has been put into place to establish guidelines for these improvements and serve as a challenge for automakers all over the world. In light of these changes, hybrid technologies have been growing immensely on the market today as customers are seeing the benefits with lower fuel consumption and higher efficiency vehicles. With the need for hybrids rising, it is vital for the engineers of this age to understand the importance of advanced vehicle technologies and learn how and why these vehicles can change the world as we know it. To help in the education process, this thesis seeks to define a powertrain model created and developed to help users understand the basics behind hybrid vehicles and the effects of these advanced technologies. One of the main goals of this research is to maintain a simplified approach to model development. There are very complex vehicle simulation models in the market today, however these can be hard to manipulate and even more difficult to understand. The 1 Hz model described within this work aims to allow energy to be simply and understandable traced through a hybrid powertrain. Through the use of a 'backwards' energy tracking method, demand for a drive cycle is found using a drive cycle and vehicle parameters. This demand is then used to determine what amount of energy would be required at each component within the powertrain all the way from the wheels to the fuel source, taking into account component losses and accessory loads on the vehicle. Various energy management strategies are developed and explained including controls for regenerative braking, Battery Electric Vehicles, and Thermostatic and Load-following Series Hybrid Electric Vehicles. These strategies can be easily compared and manipulated to understand the tradeoffs and limitations of each. After validating this model, several studies are completed. First, an example of using this model to design a hybrid powertrain is conducted. This study moves from defining system requirements to component selection, and then finding the best powertrain to accomplish the given constraints. Next, a parameter known as Power Split Fraction is studied to provide insight on how it affects overall powertrain efficiency. Since the goal with advanced vehicle powertrains is to increase overall system efficiency and reduce overall energy consumption, it is important to understand how all of the factors involved affect the system as a whole. After completing these studies, this thesis moves on to discussing future work which will continue refining this model and making it more applicable for design. Overall, this work seeks to provide an educational tool and aid in the development of the automotive engineers of tomorrow. / Master of Science
6

Proyecto de robot de inspección de cañería submarina

Fernandez da Costa, Alejandro Marcelo January 2017 (has links)
Offshore oil production presents major challenges due to extreme environmental conditions. With present state of the art robotics, precision mechanics and automation it is now possible to provide solutions to those working conditions. The present work is part of a solution to the problem of the unblocking a subsea oil pipeline of small diameter and extensive length by designing and manufacturing a robot capable of moving inside the pipeline. Based on the previous study of an interdisciplinary group, the implementation of an umbilical cable was defined with the purpose of assuring the supply of electrical power for the robot’s energy requirements, control signals and a mechanical link to avoid the possibility of getting stuck. Similarly, the robot's movement strategy was defined based on a high reliability mechanism, capable of overcoming the great tension resulting from the interaction of the long umbilical cable with the inside of the pipe. In this work, the mechanical design is performed to implement a robot capable of overcoming big cable tensions with small components, integrating commercial components and others custom made. A solution was implemented to convert the electric power received through the cable to the mechanical power in the form required by the displacement mechanism. For this, a detailed engineering design is presented that integrates a high performance electric motor, a two-stage planetary gear transmission for high reduction ratio, a power split transmission driven by disc clutches and a mechanical power distribution stage required by the mechanism responsible for the displacement. / La producción de petróleo offshore presenta grandes desafíos por las condiciones en que se lleva a cabo, actualmente es posible darle solución con la ayuda de la robótica, la mecánica de precisión y la automatización. El presente trabajo es parte de una solución al problema de la desobstrucción en una tubería de petróleo submarina de pequeño diámetro y largo tendido mediante el diseño y la construcción de un robot capaz de trasladarse por el interior de la misma. En base al estudio previo de un grupo interdisciplinario se definió la implementación de un cable umbilical con el propósito de asegurar el suministro de potencia eléctrica para los requerimientos de energía de robot, el enlace de señales destinadas al control y un vínculo mecánico para proveer seguridad ante un eventual desperfecto. Similarmente se definió la estrategia de movimiento del robot en base a un mecanismo de alta confiabilidad, capaz de vencer una gran tensión producto de la interacción del largo cable umbilical con el interior de la tubería. En este trabajo se realiza el diseño mecánico para implementar un robot capaz de realizar grandes esfuerzos con componentes de tamaño reducido, integrando componentes comerciales y otros hechos a medida. Para ello, se implementó una solución para convertir la potencia eléctrica recibida a través del cable a la potencia mecánica en la forma requerida por el mecanismo que da lugar al movimiento. Para dicha solución se presenta un diseño detallado que integra un motor eléctrico de alto desempeño, una transmisión planetaria reductora de dos etapas, una transmisión inversora accionada por embragues de discos y una etapa de distribución de potencia mecánica requerida por el mecanismo responsable del movimiento.
7

Proyecto de robot de inspección de cañería submarina

Fernandez da Costa, Alejandro Marcelo January 2017 (has links)
Offshore oil production presents major challenges due to extreme environmental conditions. With present state of the art robotics, precision mechanics and automation it is now possible to provide solutions to those working conditions. The present work is part of a solution to the problem of the unblocking a subsea oil pipeline of small diameter and extensive length by designing and manufacturing a robot capable of moving inside the pipeline. Based on the previous study of an interdisciplinary group, the implementation of an umbilical cable was defined with the purpose of assuring the supply of electrical power for the robot’s energy requirements, control signals and a mechanical link to avoid the possibility of getting stuck. Similarly, the robot's movement strategy was defined based on a high reliability mechanism, capable of overcoming the great tension resulting from the interaction of the long umbilical cable with the inside of the pipe. In this work, the mechanical design is performed to implement a robot capable of overcoming big cable tensions with small components, integrating commercial components and others custom made. A solution was implemented to convert the electric power received through the cable to the mechanical power in the form required by the displacement mechanism. For this, a detailed engineering design is presented that integrates a high performance electric motor, a two-stage planetary gear transmission for high reduction ratio, a power split transmission driven by disc clutches and a mechanical power distribution stage required by the mechanism responsible for the displacement. / La producción de petróleo offshore presenta grandes desafíos por las condiciones en que se lleva a cabo, actualmente es posible darle solución con la ayuda de la robótica, la mecánica de precisión y la automatización. El presente trabajo es parte de una solución al problema de la desobstrucción en una tubería de petróleo submarina de pequeño diámetro y largo tendido mediante el diseño y la construcción de un robot capaz de trasladarse por el interior de la misma. En base al estudio previo de un grupo interdisciplinario se definió la implementación de un cable umbilical con el propósito de asegurar el suministro de potencia eléctrica para los requerimientos de energía de robot, el enlace de señales destinadas al control y un vínculo mecánico para proveer seguridad ante un eventual desperfecto. Similarmente se definió la estrategia de movimiento del robot en base a un mecanismo de alta confiabilidad, capaz de vencer una gran tensión producto de la interacción del largo cable umbilical con el interior de la tubería. En este trabajo se realiza el diseño mecánico para implementar un robot capaz de realizar grandes esfuerzos con componentes de tamaño reducido, integrando componentes comerciales y otros hechos a medida. Para ello, se implementó una solución para convertir la potencia eléctrica recibida a través del cable a la potencia mecánica en la forma requerida por el mecanismo que da lugar al movimiento. Para dicha solución se presenta un diseño detallado que integra un motor eléctrico de alto desempeño, una transmisión planetaria reductora de dos etapas, una transmisión inversora accionada por embragues de discos y una etapa de distribución de potencia mecánica requerida por el mecanismo responsable del movimiento.
8

Proyecto de robot de inspección de cañería submarina

Fernandez da Costa, Alejandro Marcelo January 2017 (has links)
Offshore oil production presents major challenges due to extreme environmental conditions. With present state of the art robotics, precision mechanics and automation it is now possible to provide solutions to those working conditions. The present work is part of a solution to the problem of the unblocking a subsea oil pipeline of small diameter and extensive length by designing and manufacturing a robot capable of moving inside the pipeline. Based on the previous study of an interdisciplinary group, the implementation of an umbilical cable was defined with the purpose of assuring the supply of electrical power for the robot’s energy requirements, control signals and a mechanical link to avoid the possibility of getting stuck. Similarly, the robot's movement strategy was defined based on a high reliability mechanism, capable of overcoming the great tension resulting from the interaction of the long umbilical cable with the inside of the pipe. In this work, the mechanical design is performed to implement a robot capable of overcoming big cable tensions with small components, integrating commercial components and others custom made. A solution was implemented to convert the electric power received through the cable to the mechanical power in the form required by the displacement mechanism. For this, a detailed engineering design is presented that integrates a high performance electric motor, a two-stage planetary gear transmission for high reduction ratio, a power split transmission driven by disc clutches and a mechanical power distribution stage required by the mechanism responsible for the displacement. / La producción de petróleo offshore presenta grandes desafíos por las condiciones en que se lleva a cabo, actualmente es posible darle solución con la ayuda de la robótica, la mecánica de precisión y la automatización. El presente trabajo es parte de una solución al problema de la desobstrucción en una tubería de petróleo submarina de pequeño diámetro y largo tendido mediante el diseño y la construcción de un robot capaz de trasladarse por el interior de la misma. En base al estudio previo de un grupo interdisciplinario se definió la implementación de un cable umbilical con el propósito de asegurar el suministro de potencia eléctrica para los requerimientos de energía de robot, el enlace de señales destinadas al control y un vínculo mecánico para proveer seguridad ante un eventual desperfecto. Similarmente se definió la estrategia de movimiento del robot en base a un mecanismo de alta confiabilidad, capaz de vencer una gran tensión producto de la interacción del largo cable umbilical con el interior de la tubería. En este trabajo se realiza el diseño mecánico para implementar un robot capaz de realizar grandes esfuerzos con componentes de tamaño reducido, integrando componentes comerciales y otros hechos a medida. Para ello, se implementó una solución para convertir la potencia eléctrica recibida a través del cable a la potencia mecánica en la forma requerida por el mecanismo que da lugar al movimiento. Para dicha solución se presenta un diseño detallado que integra un motor eléctrico de alto desempeño, una transmisión planetaria reductora de dos etapas, una transmisión inversora accionada por embragues de discos y una etapa de distribución de potencia mecánica requerida por el mecanismo responsable del movimiento.
9

Efficient and high performing hydraulic systems in mobile machines

Frerichs, Ludger, Hartmann, Karl January 2016 (has links)
Hydraulic systems represent a crucial part of the drivetrain of mobile machines. The most important drivers of current developments, increasing energy efficiency and productivity, are leading to certain trends in technology. On a subsystem level, working hydraulics are utilizing effects by improving control functions and by maximum usage of energy recovery potential. Independent metering and displacement control, partly in combination with hybrid concepts, are the dominating approaches. Traction drives gain advantage from optimized power split transmissions, which consequently are being used in a growing number of applications. On the level of components, increase of efficiency and dynamics as well as power density are important trends. Altogether, design of systems and components is more and more based on modular concepts. In this sense, among others, sensors and control elements are being integrated to actuators; electric and hydraulic technology is being merged. In order to achieve maximum efficiency and performance of the entire machine, control of hydraulics has to include the whole drivetrain and the entire mobile machine in its application. In modern words, mobile hydraulic systems are a part of cyber physical systems.
10

Viability of Power-Split Hybrid-Electric Aircraft under Robust Control Co-Design

Bandukwala, Mustafa January 2021 (has links)
No description available.

Page generated in 0.0626 seconds