• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The use of thermographic imaging to evaluate therapeutic response in human tumour xenograft models

Hussain, Nosheen, Connah, David, Ugail, Hassan, Cooper, Patricia A., Falconer, Robert A., Patterson, Laurence H., Shnyder, Steven 14 July 2016 (has links)
Yes / Non-invasive methods to monitor tumour growth are an important goal in cancer drug development. Thermographic imaging systems offer potential in this area, since a change in temperature is known to be induced due to changes within the tumour microenvironment. This study demonstrates that this imaging modality can be applied to a broad range of tumour xenografts and also, for the first time, the methodology’s suitability to assess anti-cancer agent efficacy. Mice bearing subcutaneously implanted H460 lung cancer xenografts were treated with a novel vascular disrupting agent, ICT-2552, and the cytotoxin doxorubicin. The effects on tumour temperature were assessed using thermographic imaging over the first 6 hours post-administration and subsequently a further 7 days. For ICT-2552 a significant initial temperature drop was observed, whilst for both agents a significant temperature drop was seen compared to controls over the longer time period. Thus thermographic imaging can detect functional differences (manifesting as temperature reductions) in the tumour response to these anti-cancer agents compared to controls. Importantly, these effects can be detected in the first few hours following treatment and therefore the tumour is observable non-invasively. As discussed, this technique will have considerable 3Rs benefits in terms of reduction and refinement of animal use. / University of Bradford
2

<b>Reprogramming the Pancreatic Cancer Stroma by Targeting Coagulation at the Tumor Microenvironment</b>

Sae Rome Choi (18392505) 17 April 2024 (has links)
<p dir="ltr">Pancreatic ductal adenocarcinoma (PDAC) remains one of the most deadliest cancer and despite advancements in cancer therapy, remain highly refractory to treatment, largely due to its desmoplastic tumor microenvironment (TME) characterized by complex interactions among cancer cells and stromal components. Particularly, the PDAC associated coagulation system due to leaky tumor vasculatures plays a pivotal role in reshaping the PDAC stroma and its pathogenesis. Understanding the intricate interplay between tumor cells, stromal cells, and the elevated coagulation pathway elements, including tissue factor, thrombin, and fibrin, is essential for developing effective therapeutic strategies. To address these challenges, this research proposes the engineering of a novel PDAC-associated coagulation system using a microfluidic technology, known as coagulation-on-tumor-microenvironment-on-chip (cT-MOC). The study aims to integrate key coagulation pathways in cT-MOC to investigate pivotal interactions in the PDAC stroma: <i>i)</i> thrombin-protease-activated receptors (PARs) mediated promotion of PDAC fibrosis via activation of cancer-fibroblast cross-talk; <i>ii)</i> in-depth analysis of transport and mechanical properties of collagen-fibrin microstructure; <i>iii)</i> inhibited drug delivery in reprogrammed PDAC stroma due to pronounced fibrin deposition on collagen. By leveraging innovative microfluidic technologies and comprehensive experimental approaches, the research endeavors to provide a novel platform that bridges traditional <i>in vitro</i> and <i>in vivo</i> models to overcome the challenges posed by the desmoplastic TME and enhance therapeutic strategies for treatment by targeting the coagulation at the PDAC TME.</p>

Page generated in 0.0595 seconds