• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Formation and fragmentation of stellar proto-clusters / Formation et fragmentation des proto-amas stellaires

Lee, Yueh-Ning 27 September 2017 (has links)
Les étoiles sont des éléments fondamentaux de l'Univers. Elles émettent de l'énergie en forme de lumières et rendent les matériaux dans le ciel visible. Les étoiles se regroupent pour former les galaxies, en déterminant l'évolution et la dynamique de ce dernier. En même temps, l'étoile est le centre d'un système planétaire. Le disque de débris autour d'une jeune étoile se refroidi et forme un système de planète. Les caractéristiques de ce système, notamment la masse de l'étoile centrale, jouent un rôle important en ce qui concerne l'apparition de la vie. Cette thèse a pour objectif de comprendre comment la massed'une étoile est assemblée et déterminée, donnant une distribution de masse apparemmentuniverselle quel que soit l'environnement de leur formation..La thèse est constituée de deux chapitres introductifs sur la physique de formation stellaire et sur les méthodes numériques. Les trois chapitres suivants sont constitués des projets menés durant la thèse: la formation des proto-amas, l'effet de condition initiale dans le nuage moléculaire, et la formation des coeurs préstellaires par la fragmentation des filaments, suivis par les articles publiés dans les journaux scientifiques. Le dernier chapitre conclu la thèse et donne les perspectifs pour la future recherche / Stars are building blocks of the Universe. They emit energy in form of light and make the material in the night sky visible. They are the elementary constituents of galaxies, determining their evolution and dynamics. On the other hand, stars are the hosts o planetary systems. The debris disc around a new-born star eventually cools down and form planets. The characteristic of the planetary system, essentially the mass of the central star, plays a major role in the formation of living being on planets. The formation of stars often occur in a clusters manner, and one of the important issues constantly under debate is the distribution of the mass of newly-born stars. This thesis is aimed to understand the Initial Mass Function which seems to be universal among different environments.This manuscripts comprises two introductory chapters on the physics of star formation and the numerical methods, respectively. Three following chapters present the projets carried out during the thesis: formation of proto-clusters, effects of initial condition in the molecular cloud, and the formation of prestellar cores from filament fragmentation, all followed by published journal articles. The last chapter concludes the manuscript and discuss the perspectives
2

Chimie à la surface des grains dans les régions de formation stellaire / Surface chemistry on interstellar grains in star-forming regions

Taquet, Vianney 26 September 2012 (has links)
Les premières étapes de la formation stellaire sont accompagnées d'une évolution de la chimie, à partir de molécules simples dans les nuages froids et sombres vers la détection de molécules organiques complexes autour des étoiles de Classe 0. Bien que principalement composés de gaz, ces nuages contiennent également une petite quantité de poussière microscopique. La contribution de cette poussière est toutefois importante car elle agit comme un catalyseur pour la formation de molécules clés observées dans les glaces froides interstellaires, telles que l'eau ou le méthanol. Ces glaces seraient la première étape d'une chimie riche observée dans les enveloppes tièdes des protoétoiles. Durant cette thèse, je me suis concentré sur la première étape en utilisant une double approche. i) Modélisation. J'ai développé un modèle astrochimique couplant la chimie en phase gazeuse et à la surface des grains. Ce modèle suit la formation multicouche des glaces interstellaires et, grace à une approche multiparamètre, nous permet également d'étudier l'influence de paramètres physiques, chimiques, et de surface, tels que la porosité des grains, sur la composition chimique des glaces. Le modèle a ensuite été utilisé pour prédire la différenciation chimique et la deutéra- tion des glaces interstellaires. Ainsi, j'ai construit un réseau chimique en prenant en compte les travaux expérimentaux et théoriques les plus récents. J'ai ensuite appliqué ce modèle à différents cas. J'ai par exemple montré que les glaces sont très hétérogènes et que leurs compositions sont très sensibles aux conditions physiques ainsi qu'à différents paramètres de surface. La deutéra- tion élevée du formaldehyde et du méthanol a été prédite pour une phase dense (nH ∼ 5 × 10^6 cm−3) et rapide (∼ 5000 ans) tandis que la deutération plus faible de l'eau est prédite pour des conditions typiques de nuages moléculaires. La deutération est très sensible et peut donc etre utilisée comme un traceur des conditions physiques. ii) Observations. J'ai été impliqué dans différents projets observationnels dont les buts étaient reliés aux problèmes de la chimie à la surface des grains. J'ai obtenu les trois résultats suivants. Nous avons montré une évolution de la deutération sélective du méthanol avec le type de la protoétoile, le rapport d'abondance [CH2DOH]/[CH3OD] diminuant avec la masse de la protoé- toile. Une cartographie interféromètrique de l'eau deutérée vers deux protoétoiles de faible masse nous a permis de contraindre un fort degré de deutération de l'eau dans de nouvelles sources. Finalement, nous avons détecté pour la première fois plusieurs molécules organiques complexes dans un coeur prestellaire, remettant en question le scénario actuel de formation des molécules organiques complexes dans des conditions tièdes. / The first stages of star formation are accompanied by an evolution of the chemistry, starting from simple molecules in cold dark clouds to the detection of complex organic molecules around Class 0 protostars. Although mostly composed of gas, these clouds also contain small amounts of microscopic dust. The contribution of this dust is nevertheless important because it acts as a catalyst for the formation of key molecules seen in cold interstellar ices, such as water or methanol. These ices are believed to be the first step towards the rich chemistry seen in the warm envelope of protostars. During my thesis, I focused on this first step and I did so by taking a twofold approach. i) Modelling. I have developed an astrochemical model coupling the chemistry in the gas phase and on the grain surfaces. This model follows the multilayer formation of interstellar ices and allows us to investigate the influence of key physical, chemical, and surface parameters, such as grain porosity, on the chemical composition of ices via a multiparameter approach. The model has been applied to predict the chemical differentiation and the deuteration of interstellar ices. To this end, I have built up a chemical network taking into account the most recent experimental and theoretical works. I applied then the model to various cases. For example, I showed that ices are heterogeneous and their composition are sensitive to the physical conditions as well as several grain surface parameters. The high deuteration of formaldehyde, and methanol observed around low-mass protostars has been predicted by a dense (nH ∼ 5 × 106 cm−3) and fast (∼ 5000 years) phase while the lower deuteration of water is predicted for typical molecular cloud conditions. The deuterium fractionation is very sensitive and can be used as a tracer of the physical conditions. ii) Observations. I have been involved in observational projects whose goals are related to the grain surface chemical problems. I obtained the following three results. We showed an evolution of the selective deuteration with the protostar type, the [CH2DOH]/[CH3OD] abundance ratio decreasing with the protostar mass. Interferometric mapping of deuterated water towards low- mass protostars has allowed us to constrain a high deuteration level of water in new sources. Finally, we detected several complex organic molecules in a cold prestellar core for the first time, challenging the current scenario of complex organic molecules in warm conditions.

Page generated in 0.0662 seconds