1 |
Nonparametric tail risk, macroeconomics and stock returns: predictability and risk premiaArdison, Kym Marcel Martins 12 February 2015 (has links)
Submitted by Kym Marcel Martins Ardison (kymmarcel@gmail.com) on 2015-04-06T19:04:20Z
No. of bitstreams: 1
Tail Risk - Original.pdf: 817189 bytes, checksum: 02561a6a7cb94d1480a4f78933486df4 (MD5) / Approved for entry into archive by BRUNA BARROS (bruna.barros@fgv.br) on 2015-04-28T12:21:10Z (GMT) No. of bitstreams: 1
Tail Risk - Original.pdf: 817189 bytes, checksum: 02561a6a7cb94d1480a4f78933486df4 (MD5) / Approved for entry into archive by Marcia Bacha (marcia.bacha@fgv.br) on 2015-05-04T12:33:49Z (GMT) No. of bitstreams: 1
Tail Risk - Original.pdf: 817189 bytes, checksum: 02561a6a7cb94d1480a4f78933486df4 (MD5) / Made available in DSpace on 2015-05-04T12:37:02Z (GMT). No. of bitstreams: 1
Tail Risk - Original.pdf: 817189 bytes, checksum: 02561a6a7cb94d1480a4f78933486df4 (MD5)
Previous issue date: 2015-02-12 / This paper proposes a new novel to calculate tail risks incorporating risk-neutral information without dependence on options data. Proceeding via a non parametric approach we derive a stochastic discount factor that correctly price a chosen panel of stocks returns. With the assumption that states probabilities are homogeneous we back out the risk neutral distribution and calculate five primitive tail risk measures, all extracted from this risk neutral probability. The final measure is than set as the first principal component of the preliminary measures. Using six Fama-French size and book to market portfolios to calculate our tail risk, we find that it has significant predictive power when forecasting market returns one month ahead, aggregate U.S. consumption and GDP one quarter ahead and also macroeconomic activity indexes. Conditional Fama-Macbeth two-pass cross-sectional regressions reveal that our factor present a positive risk premium when controlling for traditional factors.
|
2 |
Prissättning av periodiseringskvalitet : En studie på den nordiska marknadenPettersson, Christoffer, Östlund, Linnéa January 2021 (has links)
Denna studie undersöker om periodiseringskvalitet är en prissatt riskfaktor för nordiska företag som är noterade på en reglerad marknad under perioden 2010–2019. Tidigare studier menar att periodiseringskvalitet utgör en proxy för informationsrisk, men olika författare framställer olika slutsatser i frågan huruvida periodiseringskvalitet är en prissatt riskfaktor eller inte. Med den av McNichols (2002) modifierade Dechow & Dichev modellen (2002) mäter vi periodiseringskvalitet som standardavvikelsen av residualer från regressioner som kopplar periodiseringar till kassaflöden. Vi mäter riskpremien genom att dela in företagen i kvintiler baserad på periodiseringskvalitet och tillämpar en likaviktad portfölj som säljer företagen i de två kvintilerna med högst periodiseringskvalitet och köper företagen i kvintilerna med lägst periodiseringskvalitet. Vi finner en signifikant negativ koefficient i en två-stegs tvärsnittsregressionen som visar att periodiseringskvalitet inte utgör en prissatt riskfaktor för nordiska företag. / This study investigates if accruals quality is a priced risk factor for Nordic countries being traded on a regulated market in the Nordic countries during 2010–2019. Earlier studies argue that accruals quality is a proxy for information risk, but different authors find different results regarding whether accruals quality is a priced risk factor or not. By using the Dechow & Dichev model (2002), modified by McNichols (2002), we measure accruals quality as the standard deviation of regressions that match accruals to cash flow. We measure the risk premium by dividing the entities into quintiles and use an equal-weighted portfolio that sells the stocks in the two quintiles with the highest accruals quality and buys the two quintiles with the lowest accruals quality. We find a significant negative coefficient in a two-stage cross-sectional regression which shows that accruals quality is not a priced risk factor in the Nordic countries.
|
Page generated in 0.0886 seconds