11 |
Criptografia RSA: a teoria dos números posta em prática / RSA encryption: number theory put into practiceSouza, Lana Priscila January 2015 (has links)
SOUZA, Lana Priscila. Criptografia RSA: a teoria dos números posta em prática. 2015. 75 f. Dissertação (Mestrado em Matemática em Rede Nacional) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2015. / Submitted by Erivan Almeida (eneiro@bol.com.br) on 2015-08-07T19:33:01Z
No. of bitstreams: 1
Dissertacao de Lana Priscila Souza.pdf: 1098542 bytes, checksum: 06aea5efebc52f40e33b41f4966044bc (MD5) / Approved for entry into archive by Rocilda Sales(rocilda@ufc.br) on 2015-08-10T17:32:26Z (GMT) No. of bitstreams: 1
Dissertacao de Lana Priscila Souza.pdf: 1098542 bytes, checksum: 06aea5efebc52f40e33b41f4966044bc (MD5) / Made available in DSpace on 2015-08-10T17:32:26Z (GMT). No. of bitstreams: 1
Dissertacao de Lana Priscila Souza.pdf: 1098542 bytes, checksum: 06aea5efebc52f40e33b41f4966044bc (MD5)
Previous issue date: 2015 / Since the advent of writing, sending secret messages has been an important way to maintain confidentiality of sensitive information. The art of crafting messages from secret codes appears in the figure of encryption that over time extends its services to commercial transactions over the Internet. The main algorithm used by the internet is called RSA. Thus, the RSA Encryption encodes credit card numbers, bank passwords, account numbers and uses for that elements of an important area of mathematics: number theory. / Desde o advento da escrita, o envio de mensagens secretas tem sido uma importante maneira de guardar sigilo de informações confidenciais. A arte de elaborar mensagens a partir de códigos secretos surge na figura da criptografia que, com o passar do tempo, estende os seus serviços às transações comerciais realizadas pela internet. O principal algoritmo utilizado pela internet recebe o nome de RSA. Assim, a criptografia RSA codifica números de cartões de créditos, senhas de bancos, números de contas e utiliza para isso elementos de uma importante área da Matemática: a Teoria dos Números.
|
12 |
Ideais fechados e primos em skew anéis de grupos parciaisÀvila Guzmán, Jesús Antonio January 2008 (has links)
Neste trabalho estudamos açães parciais de grupos abelianos sobre um anel R (denotadas por (R,α)), com ação global envolvente (T,β). Construímos o anel de α-quocientes de Martindale Q de R e estendemos a ação parcial (R,α) a Q. Entre outros resultados provamos que existe uma correspondência obijetiva entre todos os ideais R-disjuntos fechados de R*α G e todos os ideais T-disjuntos fechados de T* α G. Também provamos que existe uma correspondênciao bijetiva entre todos os ideais R-disjuntos fechados de R* α G e todos os ideais Q-disjuntos fechados de Q* α G. Provamos que estas correspondências preservam ideais primos. Finalmente, usamos estes resultados para estudar algumas classes de ideais primos de R*α G como ideais fortemente primos e primos não singulares. / In this thesis we study partial actions of abelian groups on a ring R (denoted by (R,α )), with enveloping action (T,β). We construct the Martindale -quotient ring Q and we extend the partial action (R,α) to Q. Among others results we prove that there exist a one-to-one correspondence between the R-disjoint closed and prime ideals of R* α G and the T-disjoint closed and prime ideals of T* α G. We also prove that there exist a one-to-one correspondence between the R-disjoint closed and prime ideals of R* α G and the Q-disjoint closed and prime ideals of Q* α G. Finally, we use this results to study the strongly prime ideals and the nonsingular prime ideals of R*α G.
|
13 |
Ideais primos e fechados em extensões de anéisSant'Ana, Alvino Alves January 1992 (has links)
Nesta dissertação, estudamos ideais primos e ideias fechados em S = R[E], onde S é uma extensão livre centralizante do anel primo R. / In this thesis, we study prime ideals and closed ideal in S = R[E], where S is a centralizing free extension of the prime ring R.
|
14 |
Sobre pE-grupos e pA-grupos finitosBardella, Marina Gabriella Ribeiro 07 March 2012 (has links)
Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2012. / Submitted by Sabrina Silva de Macedo (sabrinamacedo@bce.unb.br) on 2012-07-18T13:02:44Z
No. of bitstreams: 1
2012_MarinaGabrillaRibeiroBardella.pdf: 1332055 bytes, checksum: bd7481739f43d1c40209e95eb43edade (MD5) / Approved for entry into archive by Patrícia Nunes da Silva(patricia@bce.unb.br) on 2012-09-13T18:31:43Z (GMT) No. of bitstreams: 1
2012_MarinaGabrillaRibeiroBardella.pdf: 1332055 bytes, checksum: bd7481739f43d1c40209e95eb43edade (MD5) / Made available in DSpace on 2012-09-13T18:31:43Z (GMT). No. of bitstreams: 1
2012_MarinaGabrillaRibeiroBardella.pdf: 1332055 bytes, checksum: bd7481739f43d1c40209e95eb43edade (MD5) / Um grupo G é um E – grupo (respectivamente, A-grupo) se G é tal que seus elementos comutam com suas respectivas imagens endomorfas (respectivamente, automorfas).Neste trabalho, estudamos algumas propriedades de E-grupos baseadas nos artigos\3-generator groups whose elements commute with their endomorphic images areabelian" e \Minimal number of generators and minimum order of a non-abelian groupwhose elements commute with their endomorphic images", ambos de A. Abdollahi, A.Faghihi e A. Mohammadi Hassanabadi. É possível mostrar que qualquer E-grupo e A-grupo possui classe de nilpotência no máximo 3. Em \Finite 3-groups of class 3 whose elements commute with their automorphic images", A. Abdollahi, A. Faghihi, S. A. Linton, e E. A. O'Brien mostraram que esse máximo _e atingido; para isso construíram um exemplo de um A-grupo de classe de nilpotência exatamente 3. Baseado nesse artigo, estudamos os aspectos teóricos e certos detalhes dos algoritmos (e suas implementações) usados para a construção de tal grupo. ______________________________________________________________________________ ABSTRACT / A group G is an E-group (respectively A-group) if G is such that its elements commute with their endomorphic (respectively automorphic) images. In this work, we study some properties of E-groups based on the papers\3-generatorgroups whose elements commute with their endomorphic images are abelian" and \Minimalnumber of generators and minimum order of a non-abelian group whose elements commute with their endomorphic images", both by A. Abdollahi, A. Faghihi and A.Mohammadi Hassanabadi.It is possible to show that such groups have nilpotency class at most 3. In \Finite3-groups of class 3 whose elements commute with their automorphic images", A. Abdollahi,A. Faghihi, S. A. Linton, and E. A. O'Brien showed that this maximum is reached. To do so they constructed an A-group having nilpotency class precisely 3. Based onthis paper, we study the theoretical aspects and certain details of the algorithms (andtheir implementations) used for the construction of such group.
|
15 |
Ideais primos e fechados em extensões de anéisSant'Ana, Alvino Alves January 1992 (has links)
Nesta dissertação, estudamos ideais primos e ideias fechados em S = R[E], onde S é uma extensão livre centralizante do anel primo R. / In this thesis, we study prime ideals and closed ideal in S = R[E], where S is a centralizing free extension of the prime ring R.
|
16 |
Ideais primos em skew anéis de polinômiosGobbi, Luciane January 2007 (has links)
Sejam R um anel, p um automorfismo e d uma derivação de R. Este trabalho tem por objetivo estudar os ideais primos em skew anel de Laurent R < x;p >, skew anel de polinômios do tipo automorfismo R[x;p ] e skew anel de polinômios do tipo derivação R[x; d]. Para os casos R < x;p > e R[x; d] obtemos uma descrição completa dos ideais primos R-disjuntos. Em R[x;p] obtemos uma caracterização dos ideais R-disjuntos fortemente -primos. Além disto, quando R é um anel primo, obtemos uma caracterização dos ideais primos R-disjuntos de R[x;p]. / Let R be a ring, an automorphism and d a derivation of R. The purpose of this dissertation is to study prime ideals in skew Laurent polynomial rings R < x;p >, skew polynomial ring of automorphism type R[x;p ] and skew polynomial ring of derivation type R[x; d]. We obtained a full description of R-disjoint prime ideals in R < x;p > and R[x; d]. In the case of R[x;p] we obtained a characterization of strongly p -prime R-disjoint ideals. Furthermore, when R is a prime ring, we obtain a characterization of the R-disjoint prime ideals of R[x;p].
|
17 |
Tópicos de aritmética: uma proposta para a educação básica / Topics of arithmetic: a proposal for basic educationAlcântara, Francisco Ailton January 2014 (has links)
ALCÂNTARA, Francisco Ailton. Tópicos de aritmética: uma proposta para a educação básica. 2014. 100 f. Dissertação (Mestrado em Matemática em Rede Nacional) - Centro de Ciências, Universidade Federal do Ceará, Juazeiro do Norte, 2014. / Submitted by Erivan Almeida (eneiro@bol.com.br) on 2014-08-20T19:50:14Z
No. of bitstreams: 1
2014_dis_faalcantara.pdf: 20597432 bytes, checksum: c827a72df1564d829a2e83d724e17f7e (MD5) / Approved for entry into archive by Rocilda Sales(rocilda@ufc.br) on 2014-08-21T15:53:40Z (GMT) No. of bitstreams: 1
2014_dis_faalcantara.pdf: 20597432 bytes, checksum: c827a72df1564d829a2e83d724e17f7e (MD5) / Made available in DSpace on 2014-08-21T15:53:40Z (GMT). No. of bitstreams: 1
2014_dis_faalcantara.pdf: 20597432 bytes, checksum: c827a72df1564d829a2e83d724e17f7e (MD5)
Previous issue date: 2014 / This paper presents arithmetic topics related to the study of the division, for use in the high school classroom, whose purpose is to seek further knowledge of arithmetic that the students learn in elementary school. We begin with the approach of the main properties of divisors, the division algorithm and the motto of the remains. Then we study the prime numbers with special attention to the fundamental theorem of arithmetic, of paramount importance in achieving many important results in this text. Further down,
the definitions of greatest common divisor and least common multiple and the characterizations, properties and geometric interpretation. As a proposal for continuing
the studies of division in high school, we present an elementary study about the congruence module m and its application in demonstrating of the criteria for divisibility. Finally, we expose an implementation report of the topics of this paper in the classroom. / Este trabalho apresenta Tópicos de Aritmética, relacionados com o estudo da divisão, para aplicação em sala de aula no Ensino Médio, cujo o propósito é buscar o aprofundamento dos conhecimentos de Aritmética que os alunos adquirem no Ensino Fundamental. Iniciamos com a abordagem das principais propriedades dos divisores, o algoritmo da divisão e o lema dos restos. Em seguida, estudamos os números primos com especial atenção ao Teorema Fundamental da Aritmética, de importância capital na obtenção de muitos resultados importantes nesse texto. Mais adiante, são apresentadas as definições de máximo divisor comum e mínimo múltiplo comum bem como as caracterizações, propriedades e a interpretação geométrica. Como proposta de continuidade aos estudos sobre divisão no Ensino Médio, apresentamos um estudo elementar sobre as congruências módulo m e sua aplicação na demonstração dos critérios de divisibilidade. Por fim, expomos um relatório de aplicação dos tópicos desse trabalho em sala de aula.
|
18 |
Critérios de Divisibilidade e Aplicação em Sala de AulaGrassi Filho, Alfio [UNESP] 27 April 2015 (has links) (PDF)
Made available in DSpace on 2015-09-17T15:26:05Z (GMT). No. of bitstreams: 0
Previous issue date: 2015-04-27. Added 1 bitstream(s) on 2015-09-17T15:46:09Z : No. of bitstreams: 1
000845912.pdf: 356492 bytes, checksum: 05a7ca59d098faa3ec0da55c140971c4 (MD5) / A divisibilidade é um assunto em Matemática que, quando apresentado aos alunos do Ensino Fundamental, e também do Ensino Médio, pode ser considerada difícil para um grande número deles. As dificuldades geralmente ocorrem por falta de domínio de pré-requisitos e até por criarem uma espécie de barreira sobre o tema. Assim, este trabalho tem por objetivo apresentar uma regra geral e simplificada para estabelecer critérios de divisibilidade para números primos naturais maiores ou iguais a 7. Critérios de divisibilidade são regras que permitem determinar a divisibilidade dos números sem a necessidade de efetuar longos processos de divisão. Particularmente, estudamos o critério de divisibilidade por 7, por ser o maior número primo de um algarismo e muito pouco explorado nos materiais didáticos da Rede Oficial de Ensino do Estado de São Paulo / Divisibility is a subject in mathematics that, when presented to students of elementary school or even also of high school, can be considered difficult for a large number of them. The difficulties often occur for lack of prerequisites knowledge and even by creating a kind of barrier on the subject. This work aims to present a general and simplified rule to establish divisibility criteria for natural primes greater or equal to 7. Divisibility criteria are rules for determining divisibility of numbers without the need to perform long division processes. In particular, we study the criterion of divisibility by 7, the largest prime number of one digit and very little explored in teaching materials of the Official Network of São Paulo State Education
|
19 |
Ideais primos em skew anéis de polinômiosGobbi, Luciane January 2007 (has links)
Sejam R um anel, p um automorfismo e d uma derivação de R. Este trabalho tem por objetivo estudar os ideais primos em skew anel de Laurent R < x;p >, skew anel de polinômios do tipo automorfismo R[x;p ] e skew anel de polinômios do tipo derivação R[x; d]. Para os casos R < x;p > e R[x; d] obtemos uma descrição completa dos ideais primos R-disjuntos. Em R[x;p] obtemos uma caracterização dos ideais R-disjuntos fortemente -primos. Além disto, quando R é um anel primo, obtemos uma caracterização dos ideais primos R-disjuntos de R[x;p]. / Let R be a ring, an automorphism and d a derivation of R. The purpose of this dissertation is to study prime ideals in skew Laurent polynomial rings R < x;p >, skew polynomial ring of automorphism type R[x;p ] and skew polynomial ring of derivation type R[x; d]. We obtained a full description of R-disjoint prime ideals in R < x;p > and R[x; d]. In the case of R[x;p] we obtained a characterization of strongly p -prime R-disjoint ideals. Furthermore, when R is a prime ring, we obtain a characterization of the R-disjoint prime ideals of R[x;p].
|
20 |
Ideais primos em skew anéis de polinômiosGobbi, Luciane January 2007 (has links)
Sejam R um anel, p um automorfismo e d uma derivação de R. Este trabalho tem por objetivo estudar os ideais primos em skew anel de Laurent R < x;p >, skew anel de polinômios do tipo automorfismo R[x;p ] e skew anel de polinômios do tipo derivação R[x; d]. Para os casos R < x;p > e R[x; d] obtemos uma descrição completa dos ideais primos R-disjuntos. Em R[x;p] obtemos uma caracterização dos ideais R-disjuntos fortemente -primos. Além disto, quando R é um anel primo, obtemos uma caracterização dos ideais primos R-disjuntos de R[x;p]. / Let R be a ring, an automorphism and d a derivation of R. The purpose of this dissertation is to study prime ideals in skew Laurent polynomial rings R < x;p >, skew polynomial ring of automorphism type R[x;p ] and skew polynomial ring of derivation type R[x; d]. We obtained a full description of R-disjoint prime ideals in R < x;p > and R[x; d]. In the case of R[x;p] we obtained a characterization of strongly p -prime R-disjoint ideals. Furthermore, when R is a prime ring, we obtain a characterization of the R-disjoint prime ideals of R[x;p].
|
Page generated in 0.0407 seconds