• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An Effective Hybrid Genetic Algorithm with Priority Selection for the Traveling Salesman Problem

Hu, Je-wei 07 September 2007 (has links)
Traveling salesman problem (TSP) is a well-known NP-hard problem which can not be solved within a polynomial bounded computation time. However, genetic algorithm (GA) is a familiar heuristic algorithm to obtain near-optimal solutions within reasonable time for TSPs. In TSPs, the geometric properties are problem specific knowledge can be used to enhance GAs. Some tour segments (edges) of TSPs are fine while some maybe too long to appear in a short tour. Therefore, this information can help GAs to pay more attention to fine tour segments and without considering long tour segments as often. Consequently, we propose a new algorithm, called intelligent-OPT hybrid genetic algorithm (IOHGA), to exploit local optimal tour segments and enhance the searching process in order to reduce the execution time and improve the quality of the offspring. The local optimal tour segments are assigned higher priorities for the selection of tour segments to be appeared in a short tour. By this way, tour segments of a TSP are divided into two separate sets. One is a candidate set which contains the candidate fine tour segments and the other is a non-candidate set which contains non-candidate fine tour segments. According to the priorities of tour segments, we devise two genetic operators, the skewed production (SP) and the fine subtour crossover (FSC). Besides, we combine the traditional GA with 2-OPT local search algorithm but with some modifications. The modified 2-OPT is named the intelligent OPT (IOPT). Simulation study was conducted to evaluate the performance of the IOHGA. The experimental results indicate that generally the IOHGA could obtain near-optimal solutions with less time and higher accuracy than the hybrid genetic algorithm with simulated annealing algorithm and the genetic algorithm using the gene expression algorithm. Thus, the IOHGA is an effective algorithm for solving TSPs. If the case is not focused on the optimal solution, the IOHGA can provide good near-optimal solutions rapidly. Therefore, the IOHGA could be incorporated with some clustering algorithm and applied to mobile agent planning problems (MAP) in a real-time environment.

Page generated in 0.1047 seconds