91 |
Influence of Molecular Diffusion on the Transport of Passive Tracers in 2D Laminar FlowsPöschke, Patrick 05 November 2018 (has links)
In dieser Arbeit betrachten wir das Strömungs-Diffusions-(Reaktions)-Problem für
passive Markerteilchen, die in zweidimensionalen laminaren Strömungsmustern mit
geringem thermischem Rauschen gelöst sind. Der deterministische Fluss umfasst Zellen
in Form von Quadraten oder Katzenaugen. In ihnen tritt Rotationsbewegung auf.
Einige der Strömungen bestehen aus wellenförmigen Bereichen mit gerader Vorwärtsbewegung.
Alle Systeme sind entweder periodisch oder durch Wände begrenzt. Eine
untersuchte Familie von Strömungen interpoliert kontinuierlich zwischen Reihen von
Wirbeln und Scherflüssen. Wir analysieren zahlreiche numerische Simulationen, die
bisherige theoretische Vorhersagen bestätigen und neue Phänomene offenbaren. Ohne
Rauschen sind die Teilchen in einzelnen Bestandteilen des Flusses für immer gefangen.
Durch Hinzufügen von schwachem thermischen Rauschen wird die normale Diffusion
für lange Zeiten stark verstärkt und führt zu verschiedenen Diffusionsarten für
mittlere Zeiten. Mit Continuous-Time-Random-Walk-Modellen leiten wir analytische
Ausdrücke in Übereinstimmung mit den numerischen Ergebnissen her, die je nach
Parametern, Anfangsbedingungen und Alterungszeiten von subdiffusiver bis superballistischer
anomaler Diffusion für mittlere Zeiten reichen. Wir sehen deutlich, dass
einige der früheren Vorhersagen nur für Teilchen gelten, die an der Separatrix des
Flusses starten - der einzige Fall, der in der Vergangenheit ausführlich betrachtet wurde
- und dass das System zu vollkommen anderem Verhalten in anderen Situationen
führen kann, einschließlich einem Schwingenden beim Start im Zentrum einesWirbels
nach einer gewissen Alterungszeit. Darüber hinaus enthüllen die Simulationen, dass
Teilchenreaktionen dort häufiger auftreten, wo sich die Geschwindigkeit der Strömung
stark ändert, was dazu führt, dass langsame Teilchen von schnelleren getroffen werden,
die ihnen folgen.
Die umfangreichen numerischen Simulationen, die für diese Arbeit durchgeführt
wurden, mussten jetzt durchgeführt werden, da wir die Rechenleistung dafür besitzen. / In this thesis, we consider the advection-diffusion-(reaction) problem for passive tracer
particles suspended in two-dimensional laminar flow patterns with small thermal noise.
The deterministic flow comprises cells in the shape of either squares or cat’s eyes. Rotational
motion occurs inside them. Some of the flows consist of sinusoidal regions of
straight forward motion. All systems are either periodic or are bounded by walls. One
examined family of flows continuously interpolates between arrays of eddies and shear
flows. We analyse extensive numerical simulations, which confirm previous theoretical
predictions as well as reveal new phenomena. Without noise, particles are trapped
forever in single building blocks of the flow. Adding small thermal noise, leads to
largely enhanced normal diffusion for long times and several kinds of diffusion for
intermediate times. Using continuous time random walk models, we derive analytical
expressions in accordance with numerical results, ranging from subdiffusive to superballistic
anomalous diffusion for intermediate times depending on parameters, initial
conditions and aging time. We clearly see, that some of the previous predictions are
only true for particles starting at the separatrix of the flow - the only case considered in
depth in the past - and that the system might show a vastly different behavior in other
situations, including an oscillatory one, when starting in the center of an eddy after a
certain aging time. Furthermore, simulations reveal that particle reactions occur more
frequently at positions where the velocity of the flow changes the most, resulting in
slow particles being hit by faster ones following them.
The extensive numerical simulations performed for this thesis had to be done now
that we have the computational means to do so. Machines are powerful tools in order
to gain a deeper and more detailed insight into the dynamics of many complicated dynamical
and stochastic systems.
|
92 |
LES of atomization and cavitation for fuel injectors / Simulation aux grandes échelles de l'atomisation et de la cavitation dans le cadre des injections de carburantAhmed, Aqeel 06 September 2019 (has links)
Cette thèse présente la Simulation des Grandes Echelles (LES) de l’injection, de la pulvérisation et de la cavitation dans un injecteur pour les applications liées aux moteurs à combustion interne. Pour la modélisation de l’atomisation, on utilise le modèle ELSA (Eulerian Lagrangian Spray Atomization). Le modèle résout la fraction volumique du combustible liquide ainsi que la densité de surface d’interface liquide-gaz pour décrire le processus complet d’atomisation. Dans cette thèse, l’écoulement à l’intérieur de l’injecteur est également pris en compte pour une étude ultérieure de l’atomisation. L’étude présente l’application du modèle ELSA à un injecteur Diesel typique, à la fois dans le contexte de RANS et de LES.Le modèle est validé à l’aide de données expérimentales disponibles dans Engine Combustion Network (ECN). Le modèle ELSA, qui est normalement conçu pour les interfaces diffuses (non résolues), lorsque l’emplacement exact de l’interface liquide-gaz n’est pas pris en compte, est étendu pour fonctionner avec une formulation de type Volume of Fluid (VOF) de flux à deux phases, où l’interface est explicitement résolu. Le couplage est réalisé à l’aide de critères IRQ (Interface Resolution Quality), qui prennent en compte à la fois la courbure de l’interface et la quantité modélisée de la surface de l’interface. Le modèle ELSA est développé en premier lieu en considérant les deux phases comme incompressibles. L’extension à la phase compressible est également brièvement étudiée dans cette thèse. Il en résulte une formulation ELSA compressible qui prend en compte la densité variable de chaque phase. En collaboration avec l’Imperial College de Londres, la formulation de la fonction de densité de probabilité (PDF) avec les champs stochastiques est également explorée afin d’étudier l’atomisation. Dans les systèmes d’injection de carburant modernes, la pression locale à l’intérieur de l’injecteur tombe souvent en dessous de la pression de saturation en vapeur du carburant, ce qui entraîne une cavitation. La cavitation affecte le flux externe et la formulation du spray. Ainsi, une procédure est nécessaire pour étudier le changement de phase ainsi que la formulation du jet en utilisant une configuration numérique unique et cohérente. Une méthode qui couple le changement de phase à l’intérieur de l’injecteur à la pulvérisation externe du jet est développée dans cette thèse. Ceci est réalisé en utilisant le volume de formulation de fluide où l’interface est considérée entre le liquide et le gaz; le gaz est composé à la fois de vapeur et d’airambiant non condensable. / This thesis presents Large Eddy Simulation (LES) of fuel injection, atomization and cavitation inside the fuel injector for applications related to internal combustion engines. For atomization modeling, Eulerian Lagrangian Spray Atomization (ELSA) model is used. The model solves for volume fraction of liquid fuel as well as liquid-gas interface surface density to describe the complete atomization process. In this thesis, flow inside the injector is also considered for subsequent study of atomization. The study presents the application of ELSA model to a typical diesel injector, both in the context of RANS and LES. The model is validated with the help of experimental data available from Engine Combustion Network (ECN). The ELSA model which is normally designed for diffused (unresolved) interfaces, where the exact location of the liquid-gas interface is not considered, is extended to work with Volume of Fluid (VOF) type formulation of two phase flow, where interface is explicitly resolved. The coupling is achieved with the help of Interface Resolution Quality (IRQ) criteria, that takes into account both the interface curvature and modeled amount of interface surface. ELSA model is developed first considering both phases as incompressible, the extension to compressible phase is also briefly studied in this thesis, resulting in compressible ELSA formulation that takes into account varying density in each phase. In collaboration with Imperial College London, the Probability Density Function (PDF) formulation with Stochastic Fields is also explored to study atomization. In modern fuel injection systems, quite oftenthe local pressure inside the injector falls below the vapor saturation pressure of the fuel, resulting in cavitation. Cavitation effects the external flow and spray formulation. Thus, a procedure is required to study the phase change as well as jet formulation using a single and consistent numerical setup. A method is developed in this thesis that couples the phase change inside the injector to the external jet atomization. This is achieved using the volume of fluid formulation where the interface is considered between liquid and gas; gas consists of both the vapor and non condensible ambient air.
|
93 |
Análise de carteiras em tempo discreto / Discrete time portfolio analysisKato, Fernando Hideki 14 April 2004 (has links)
Nesta dissertação, o modelo de seleção de carteiras de Markowitz será estendido com uma análise em tempo discreto e hipóteses mais realísticas. Um produto tensorial finito de densidades Erlang será usado para aproximar a densidade de probabilidade multivariada dos retornos discretos uniperiódicos de ativos dependentes. A Erlang é um caso particular da distribuição Gama. Uma mistura finita pode gerar densidades multimodais não-simétricas e o produto tensorial generaliza este conceito para dimensões maiores. Assumindo que a densidade multivariada foi independente e identicamente distribuída (i.i.d.) no passado, a aproximação pode ser calibrada com dados históricos usando o critério da máxima verossimilhança. Este é um problema de otimização em larga escala, mas com uma estrutura especial. Assumindo que esta densidade multivariada será i.i.d. no futuro, então a densidade dos retornos discretos de uma carteira de ativos com pesos não-negativos será uma mistura finita de densidades Erlang. O risco será calculado com a medida Downside Risk, que é convexa para determinados parâmetros, não é baseada em quantis, não causa a subestimação do risco e torna os problemas de otimização uni e multiperiódico convexos. O retorno discreto é uma variável aleatória multiplicativa ao longo do tempo. A distribuição multiperiódica dos retornos discretos de uma seqüência de T carteiras será uma mistura finita de distribuições Meijer G. Após uma mudança na medida de probabilidade para a composta média, é possível calcular o risco e o retorno, que levará à fronteira eficiente multiperiódica, na qual cada ponto representa uma ou mais seqüências ordenadas de T carteiras. As carteiras de cada seqüência devem ser calculadas do futuro para o presente, mantendo o retorno esperado no nível desejado, o qual pode ser função do tempo. Uma estratégia de alocação dinâmica de ativos é refazer os cálculos a cada período, usando as novas informações disponíveis. Se o horizonte de tempo tender a infinito, então a fronteira eficiente, na medida de probabilidade composta média, tenderá a um único ponto, dado pela carteira de Kelly, qualquer que seja a medida de risco. Para selecionar um dentre vários modelos de otimização de carteira, é necessário comparar seus desempenhos relativos. A fronteira eficiente de cada modelo deve ser traçada em seu respectivo gráfico. Como os pesos dos ativos das carteiras sobre estas curvas são conhecidos, é possível traçar todas as curvas em um mesmo gráfico. Para um dado retorno esperado, as carteiras eficientes dos modelos podem ser calculadas, e os retornos realizados e suas diferenças ao longo de um backtest podem ser comparados. / In this thesis, Markowitzs portfolio selection model will be extended by means of a discrete time analysis and more realistic hypotheses. A finite tensor product of Erlang densities will be used to approximate the multivariate probability density function of the single-period discrete returns of dependent assets. The Erlang is a particular case of the Gamma distribution. A finite mixture can generate multimodal asymmetric densities and the tensor product generalizes this concept to higher dimensions. Assuming that the multivariate density was independent and identically distributed (i.i.d.) in the past, the approximation can be calibrated with historical data using the maximum likelihood criterion. This is a large-scale optimization problem, but with a special structure. Assuming that this multivariate density will be i.i.d. in the future, then the density of the discrete returns of a portfolio of assets with nonnegative weights will be a finite mixture of Erlang densities. The risk will be calculated with the Downside Risk measure, which is convex for certain parameters, is not based on quantiles, does not cause risk underestimation and makes the single and multiperiod optimization problems convex. The discrete return is a multiplicative random variable along the time. The multiperiod distribution of the discrete returns of a sequence of T portfolios will be a finite mixture of Meijer G distributions. After a change of the distribution to the average compound, it is possible to calculate the risk and the return, which will lead to the multiperiod efficient frontier, where each point represents one or more ordered sequences of T portfolios. The portfolios of each sequence must be calculated from the future to the present, keeping the expected return at the desired level, which can be a function of time. A dynamic asset allocation strategy is to redo the calculations at each period, using new available information. If the time horizon tends to infinite, then the efficient frontier, in the average compound probability measure, will tend to only one point, given by the Kellys portfolio, whatever the risk measure is. To select one among several portfolio optimization models, it is necessary to compare their relative performances. The efficient frontier of each model must be plotted in its respective graph. As the weights of the assets of the portfolios on these curves are known, it is possible to plot all curves in the same graph. For a given expected return, the efficient portfolios of the models can be calculated, and the realized returns and their differences along a backtest can be compared.
|
94 |
Análise de carteiras em tempo discreto / Discrete time portfolio analysisFernando Hideki Kato 14 April 2004 (has links)
Nesta dissertação, o modelo de seleção de carteiras de Markowitz será estendido com uma análise em tempo discreto e hipóteses mais realísticas. Um produto tensorial finito de densidades Erlang será usado para aproximar a densidade de probabilidade multivariada dos retornos discretos uniperiódicos de ativos dependentes. A Erlang é um caso particular da distribuição Gama. Uma mistura finita pode gerar densidades multimodais não-simétricas e o produto tensorial generaliza este conceito para dimensões maiores. Assumindo que a densidade multivariada foi independente e identicamente distribuída (i.i.d.) no passado, a aproximação pode ser calibrada com dados históricos usando o critério da máxima verossimilhança. Este é um problema de otimização em larga escala, mas com uma estrutura especial. Assumindo que esta densidade multivariada será i.i.d. no futuro, então a densidade dos retornos discretos de uma carteira de ativos com pesos não-negativos será uma mistura finita de densidades Erlang. O risco será calculado com a medida Downside Risk, que é convexa para determinados parâmetros, não é baseada em quantis, não causa a subestimação do risco e torna os problemas de otimização uni e multiperiódico convexos. O retorno discreto é uma variável aleatória multiplicativa ao longo do tempo. A distribuição multiperiódica dos retornos discretos de uma seqüência de T carteiras será uma mistura finita de distribuições Meijer G. Após uma mudança na medida de probabilidade para a composta média, é possível calcular o risco e o retorno, que levará à fronteira eficiente multiperiódica, na qual cada ponto representa uma ou mais seqüências ordenadas de T carteiras. As carteiras de cada seqüência devem ser calculadas do futuro para o presente, mantendo o retorno esperado no nível desejado, o qual pode ser função do tempo. Uma estratégia de alocação dinâmica de ativos é refazer os cálculos a cada período, usando as novas informações disponíveis. Se o horizonte de tempo tender a infinito, então a fronteira eficiente, na medida de probabilidade composta média, tenderá a um único ponto, dado pela carteira de Kelly, qualquer que seja a medida de risco. Para selecionar um dentre vários modelos de otimização de carteira, é necessário comparar seus desempenhos relativos. A fronteira eficiente de cada modelo deve ser traçada em seu respectivo gráfico. Como os pesos dos ativos das carteiras sobre estas curvas são conhecidos, é possível traçar todas as curvas em um mesmo gráfico. Para um dado retorno esperado, as carteiras eficientes dos modelos podem ser calculadas, e os retornos realizados e suas diferenças ao longo de um backtest podem ser comparados. / In this thesis, Markowitzs portfolio selection model will be extended by means of a discrete time analysis and more realistic hypotheses. A finite tensor product of Erlang densities will be used to approximate the multivariate probability density function of the single-period discrete returns of dependent assets. The Erlang is a particular case of the Gamma distribution. A finite mixture can generate multimodal asymmetric densities and the tensor product generalizes this concept to higher dimensions. Assuming that the multivariate density was independent and identically distributed (i.i.d.) in the past, the approximation can be calibrated with historical data using the maximum likelihood criterion. This is a large-scale optimization problem, but with a special structure. Assuming that this multivariate density will be i.i.d. in the future, then the density of the discrete returns of a portfolio of assets with nonnegative weights will be a finite mixture of Erlang densities. The risk will be calculated with the Downside Risk measure, which is convex for certain parameters, is not based on quantiles, does not cause risk underestimation and makes the single and multiperiod optimization problems convex. The discrete return is a multiplicative random variable along the time. The multiperiod distribution of the discrete returns of a sequence of T portfolios will be a finite mixture of Meijer G distributions. After a change of the distribution to the average compound, it is possible to calculate the risk and the return, which will lead to the multiperiod efficient frontier, where each point represents one or more ordered sequences of T portfolios. The portfolios of each sequence must be calculated from the future to the present, keeping the expected return at the desired level, which can be a function of time. A dynamic asset allocation strategy is to redo the calculations at each period, using new available information. If the time horizon tends to infinite, then the efficient frontier, in the average compound probability measure, will tend to only one point, given by the Kellys portfolio, whatever the risk measure is. To select one among several portfolio optimization models, it is necessary to compare their relative performances. The efficient frontier of each model must be plotted in its respective graph. As the weights of the assets of the portfolios on these curves are known, it is possible to plot all curves in the same graph. For a given expected return, the efficient portfolios of the models can be calculated, and the realized returns and their differences along a backtest can be compared.
|
Page generated in 0.1351 seconds